Search results
Results from the WOW.Com Content Network
Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...
Architects, engineers, and contractors use these equations to create "flattened" arcs that are used in curved walls, arched ceilings, bridges, and numerous other applications. The sagitta also has uses in physics where it is used, along with chord length, to calculate the radius of curvature of an accelerated particle.
The curvature is the reciprocal of radius of curvature. That is, the curvature is =, where R is the radius of curvature [5] (the whole circle has this curvature, it can be read as turn 2π over the length 2π R). This definition is difficult to manipulate and to express in formulas.
For a path of radius r, when an angle θ is swept out, the distance traveled on the periphery of the orbit is s = rθ. Therefore, the speed of travel around the orbit is v = r d θ d t = r ω , {\displaystyle v=r{\frac {d\theta }{dt}}=r\omega ,} where the angular rate of rotation is ω .
where R is the radius of curvature of the optical surface. The sag S ( r ) is the displacement along the optic axis of the surface from the vertex, at distance r {\displaystyle r} from the axis. A good explanation of both this approximate formula and the exact formula can be found here .
In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time.Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular ...
The reciprocal of the curvature is called the radius of curvature. A circle with radius r has a constant curvature of κ ( t ) = 1 r {\displaystyle \kappa (t)={\frac {1}{r}}} whereas a line has a curvature of 0.
A space curve; the vectors T, N, B; and the osculating plane spanned by T and N. In differential geometry, the Frenet–Serret formulas describe the kinematic properties of a particle moving along a differentiable curve in three-dimensional Euclidean space, or the geometric properties of the curve itself irrespective of any motion.