enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Raoult's law - Wikipedia

    en.wikipedia.org/wiki/Raoult's_law

    Raoult's law (/ ˈ r ɑː uː l z / law) is a relation of physical chemistry, with implications in thermodynamics.Proposed by French chemist François-Marie Raoult in 1887, [1] [2] it states that the partial pressure of each component of an ideal mixture of liquids is equal to the vapor pressure of the pure component (liquid or solid) multiplied by its mole fraction in the mixture.

  3. Ideal solution - Wikipedia

    en.wikipedia.org/wiki/Ideal_solution

    An ideal solution or ideal mixture is a solution that exhibits thermodynamic properties analogous to those of a mixture of ideal gases. [1] The enthalpy of mixing is zero [2] as is the volume change on mixing by definition; the closer to zero the enthalpy of mixing is, the more "ideal" the behavior of the solution becomes.

  4. Activity coefficient - Wikipedia

    en.wikipedia.org/wiki/Activity_coefficient

    In thermodynamics, an activity coefficient is a factor used to account for deviation of a mixture of chemical substances from ideal behaviour. [1] In an ideal mixture, the microscopic interactions between each pair of chemical species are the same (or macroscopically equivalent, the enthalpy change of solution and volume variation in mixing is zero) and, as a result, properties of the mixtures ...

  5. Margules activity model - Wikipedia

    en.wikipedia.org/wiki/Margules_activity_model

    The parameters for a description at 20 °C are A 12 =0.6298 and A 21 =1.9522. This gives a minimum in the activity of Chloroform at x 1 =0.17. In general, for the case A=A 12 =A 21, the larger parameter A, the more the binary systems deviates from Raoult's law; i.e. ideal solubility. When A>2 the system starts to demix in two liquids at 50/50 ...

  6. Colligative properties - Wikipedia

    en.wikipedia.org/wiki/Colligative_properties

    Similarly, the combined ideal gas law, =, has as an analogue for ideal solutions =, where is osmotic pressure; V is the volume; n is the number of moles of solute; R is the molar gas constant 8.314 J K −1 mol −1; T is absolute temperature; and i is the Van 't Hoff factor.

  7. Osmotic coefficient - Wikipedia

    en.wikipedia.org/wiki/Osmotic_coefficient

    For instance, for solutions of magnesium chloride, the vapor pressure is slightly greater than that predicted by Raoult's law up to a concentration of 0.7 mol/kg, after which the vapor pressure is lower than Raoult's law predicts. For aqueous solutions, the osmotic coefficients can be calculated theoretically by Pitzer equations [4] or TCPC model.

  8. Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.

  9. Boiling-point elevation - Wikipedia

    en.wikipedia.org/wiki/Boiling-point_elevation

    The extent of boiling-point elevation can be calculated by applying Clausius–Clapeyron relation and Raoult's law together with the assumption of the non-volatility of the solute. The result is that in dilute ideal solutions, the extent of boiling-point elevation is directly proportional to the molal concentration (amount of substance per mass ...