enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Coplanarity - Wikipedia

    en.wikipedia.org/wiki/Coplanarity

    An example of coplanar points. Two lines in three-dimensional space are coplanar if there is a plane that includes them both. This occurs if the lines are parallel, or if they intersect each other. Two lines that are not coplanar are called skew lines.

  3. Parallel (geometry) - Wikipedia

    en.wikipedia.org/wiki/Parallel_(geometry)

    Line art drawing of parallel lines and curves. In geometry, parallel lines are coplanar infinite straight lines that do not intersect at any point. Parallel planes are planes in the same three-dimensional space that never meet. Parallel curves are curves that do not touch each other or intersect and keep a fixed minimum distance. In three ...

  4. Three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Three-dimensional_space

    On the other hand, four distinct points can either be collinear, coplanar, or determine the entire space. Two distinct lines can either intersect, be parallel or be skew. Two parallel lines, or two intersecting lines, lie in a unique plane, so skew lines are lines that do not meet and do not lie in a common plane.

  5. Line–line intersection - Wikipedia

    en.wikipedia.org/wiki/Lineline_intersection

    First we consider the intersection of two lines L 1 and L 2 in two-dimensional space, with line L 1 being defined by two distinct points (x 1, y 1) and (x 2, y 2), and line L 2 being defined by two distinct points (x 3, y 3) and (x 4, y 4). [2] The intersection P of line L 1 and L 2 can be defined using determinants.

  6. Plücker coordinates - Wikipedia

    en.wikipedia.org/wiki/Plücker_coordinates

    Alternatively, a line can be described as the intersection of two planes. Let L be a line contained in distinct planes a and b with homogeneous coefficients (a 0 : a 1 : a 2 : a 3) and (b 0 : b 1 : b 2 : b 3), respectively. (The first plane equation is =, for example.)

  7. Skew lines - Wikipedia

    en.wikipedia.org/wiki/Skew_lines

    The line through segment AD and the line through segment B 1 B are skew lines because they are not in the same plane. In three-dimensional geometry, skew lines are two lines that do not intersect and are not parallel. A simple example of a pair of skew lines is the pair of lines through opposite edges of a regular tetrahedron.

  8. Euclidean planes in three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_planes_in_three...

    In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is embedded in the plane, and is the empty set if the line is parallel to the plane but outside it. Otherwise, the line cuts through the plane at a single point.

  9. Projective space - Wikipedia

    en.wikipedia.org/wiki/Projective_space

    Dimension 0 (no lines): The space is a single point. Dimension 1 (exactly one line): All points lie on the unique line. Dimension 2: There are at least 2 lines, and any two lines meet. A projective space for n = 2 is equivalent to a projective plane. These are much harder to classify, as not all of them are isomorphic with a PG(d, K).