enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Line of action - Wikipedia

    en.wikipedia.org/wiki/Line_of_action

    In physics, the line of action (also called line of application) of a force (F→) is a geometric representation of how the force is applied. It is the straight line through the point at which the force is applied, and is in the same direction as the vector F→. [1][2] The concept is essential, for instance, for understanding the net effect of ...

  3. Line of force - Wikipedia

    en.wikipedia.org/wiki/Line_of_force

    Lines of force originated with Michael Faraday, whose theory holds that all of reality is made up of force itself. His theory predicts that electricity, light, and gravity have finite propagation delays. The theories and experimental data of later scientific figures such as Maxwell, Hertz, Einstein, and others are in agreement with the ...

  4. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Newton's laws of motion are three physical laws that describe the relationship between the motion of an object and the forces acting on it. These laws, which provide the basis for Newtonian mechanics, can be paraphrased as follows: A body remains at rest, or in motion at a constant speed in a straight line, except insofar as it is acted upon by ...

  5. Force - Wikipedia

    en.wikipedia.org/wiki/Force

    A force is an influence that can cause an object to change its velocity unless counterbalanced by other forces. The concept of force makes the everyday notion of pushing or pulling mathematically precise. Because the magnitude and direction of a force are both important, force is a vector quantity.

  6. Collision - Wikipedia

    en.wikipedia.org/wiki/Collision

    This is the line along which internal force of collision acts during impact, and Newton's coefficient of restitution is defined only along this line. Collisions in ideal gases approach perfectly elastic collisions, as do scattering interactions of sub-atomic particles which are deflected by the electromagnetic force. Some large-scale ...

  7. Torque - Wikipedia

    en.wikipedia.org/wiki/Torque

    t. e. In physics and mechanics, torque is the rotational analogue of linear force. [1] It is also referred to as the moment of force (also abbreviated to moment). The symbol for torque is typically , the lowercase Greek letter tau. When being referred to as moment of force, it is commonly denoted by M.

  8. Net force - Wikipedia

    en.wikipedia.org/wiki/Net_force

    The force is the net force, but to calculate the additional torque, the net force must be assigned the line of action. The line of action can be selected arbitrarily, but the additional pure torque depends on this choice. In a special case, it is possible to find such line of action that this additional torque is zero.

  9. Field line - Wikipedia

    en.wikipedia.org/wiki/Field_line

    In physics, drawings of field lines are mainly useful in cases where the sources and sinks, if any, have a physical meaning, as opposed to e.g. the case of a force field of a radial harmonic. For example, Gauss's law states that an electric field has sources at positive charges , sinks at negative charges, and neither elsewhere, so electric ...