enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    The cross product a × b is defined as a vector c that is perpendicular (orthogonal) to both a and b, with a direction given by the right-hand rule [1] and a magnitude equal to the area of the parallelogram that the vectors span. [2] The cross product is defined by the formula [8] [9]

  3. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector[1] or spatial vector[2]) is a geometric object that has magnitude (or length) and direction. Euclidean vectors can be added and scaled to form a vector space. A vector quantity is a vector-valued physical quantity, including ...

  4. Right-hand rule - Wikipedia

    en.wikipedia.org/wiki/Right-hand_rule

    The index finger points in the direction of the velocity vector v. The middle finger points in the direction of the magnetic field vector B. The thumb points in the direction of the cross product F. For example, for a positively charged particle moving to the north, in a region where the magnetic field points west, the resultant force points up ...

  5. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    Vector projection. The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as or a∥b. The vector component or vector resolute of a perpendicular to b, sometimes ...

  6. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Rotation matrix. In linear algebra, a rotation matrix is a transformation matrix that is used to perform a rotation in Euclidean space. For example, using the convention below, the matrix. rotates points in the xy plane counterclockwise through an angle θ about the origin of a two-dimensional Cartesian coordinate system.

  7. Net force - Wikipedia

    en.wikipedia.org/wiki/Net_force

    A force is known as a bound vector—which means it has a direction and magnitude and a point of application. A convenient way to define a force is by a line segment from a point A to a point B. If we denote the coordinates of these points as A = (A x, A y, A z) and B = (B x, B y, B z), then the force vector applied at A is given by

  8. Force - Wikipedia

    en.wikipedia.org/wiki/Force

    When two forces act on a point particle, the resulting force, the resultant (also called the net force), can be determined by following the parallelogram rule of vector addition: the addition of two vectors represented by sides of a parallelogram, gives an equivalent resultant vector that is equal in magnitude and direction to the transversal ...

  9. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    The Frenet–Serret formulas are frequently introduced in courses on multivariable calculus as a companion to the study of space curves such as the helix. A helix can be characterized by the height 2π h and radius r of a single turn. The curvature and torsion of a helix (with constant radius) are given by the formulas.