Search results
Results from the WOW.Com Content Network
The noise reduction coefficient (commonly abbreviated NRC) is a single number value ranging from 0.0 to 1.0 that describes the average sound absorption performance of a material. An NRC of 0.0 indicates the object does not attenuate mid-frequency sounds, but rather reflects sound energy.
It is based on the ASTM E-1332 Standard Classification for Rating Outdoor-Indoor Sound Attenuation. [37] Unlike the STC, which is based on a noise spectrum targeting speech sounds, OITC uses a source noise spectrum that considers frequencies down to 80 Hz (aircraft/rail/truck traffic) and is weighted more to lower frequencies. The OITC value is ...
Noise experts and some small specialized companies have slowly developed a limited number of calculation tools, which have increased in number and become more user-friendly, covering more application cases, and adding service elements to the noise calculation tools. The noise calculation process is complex in input (gathering data, correctly ...
Friis's formula is used to calculate the total noise factor of a cascade of stages, each with its own noise factor and power gain (assuming that the impedances are matched at each stage). The total noise factor can then be used to calculate the total noise figure. The total noise factor is given as
The Sound Reduction Index is expressed in decibels (dB). It is the weighted sound reduction index for a partition or single component only. This is a laboratory-only measurement, which uses knowledge of the relative sizes of the rooms in the test suite, and the reverberation time in the receiving room, and the known level of noise which can pass between the rooms in the suite by other routes ...
In the above formula, P is measured in units of power, such as watts (W) or milliwatts (mW), and the signal-to-noise ratio is a pure number. However, when the signal and noise are measured in volts (V) or amperes (A), which are measures of amplitude, [note 1] they must first be squared to obtain a quantity proportional to power, as shown below:
The noise power from a simple load is equal to kTB, where k is the Boltzmann constant, T is the absolute temperature of the load (for example a resistor), and B is the measurement bandwidth. This makes the noise figure a useful figure of merit for terrestrial systems, where the antenna effective temperature is usually near the standard 290 K ...
The effect is illustrated in Fig. 1, which shows a hard boundary at one end (the speaker) and the open-ended line vent at the other. The phase relationship between the bass driver and vent is in phase in the pass band until the frequency approaches the quarter wavelength, when the relationship reaches 90 degrees as shown.