Search results
Results from the WOW.Com Content Network
In mechanical engineering, an eccentric is a circular disk (eccentric sheave) solidly fixed to a rotating axle with its centre offset from that of the axle (hence the word "eccentric", out of the center). [1] It is used most often in steam engines, and used to convert rotary motion into linear reciprocating motion to drive a sliding valve or ...
The mean eccentricity of an object is the average eccentricity as a result of perturbations over a given time period. Neptune currently has an instant (current epoch ) eccentricity of 0.011 3 , [ 13 ] but from 1800 to 2050 has a mean eccentricity of 0.008 59 .
For example, on a triaxial ellipsoid, the meridional eccentricity is that of the ellipse formed by a section containing both the longest and the shortest axes (one of which will be the polar axis), and the equatorial eccentricity is the eccentricity of the ellipse formed by a section through the centre, perpendicular to the polar axis (i.e. in ...
Horizontal eccentricity, in vision, degrees of visual angle from the center of the eye; Eccentric contraction, the lengthening of muscle fibers; Eccentric position of a surveying tripod, to be able to measure hidden points; Eccentric training, the motion of an active muscle while it is lengthening under load; Eccentricity, a deviation from ...
The eccentric anomaly is one of three angular parameters ("anomalies") that define a position along an orbit, the other two being the true anomaly and the mean anomaly. Eccentricity vector – In celestial mechanics, the eccentricity vector of a Kepler orbit is the dimensionless vector with direction pointing from apoapsis to periapsis and with ...
For example, simple atmospheric drag is another complicating factor for objects in low Earth orbit. These rules of thumb are decidedly inaccurate when describing two or more bodies of similar mass, such as a binary star system (see n-body problem). Celestial mechanics uses more general rules applicable to a wider variety of situations. Kepler's ...
The eccentricity e is defined as: = . From Pythagoras's theorem applied to the triangle with r (a distance FP) as hypotenuse: = + () = () + ( + ) = + = () Thus, the radius (distance from the focus to point P) is related to the eccentric anomaly by the formula
Roundness is dominated by the shape's gross features rather than the definition of its edges and corners, or the surface roughness of a manufactured object. A smooth ellipse can have low roundness, if its eccentricity is large. Regular polygons increase their roundness with increasing numbers of sides, even though they are still sharp-edged.