Search results
Results from the WOW.Com Content Network
A quarter of the world's SARS-CoV-2 viral genomes were sequenced with nanopore devices. The technology offers an important tool for combating antimicrobial resistance. [11] In 2020, China-based Qitan Technology launched its nanopore single-molecule gene sequencer, [12] while in 2024 MGI Tech launched its own products. [13]
Oxford Nanopore Technologies plc is a UK-based company which develops and sells nanopore sequencing products (including the portable DNA sequencer, MinION) for the direct, electronic analysis of single molecules. [2] [3] [4] It is listed on the London Stock Exchange and is a constituent of the FTSE 250 Index. [5]
Schematic of Nanopore Internal Machinery and corresponding current blockade during sequencing A nanopore is a pore of nanometer size. It may, for example, be created by a pore-forming protein or as a hole in synthetic materials such as silicon or graphene.
Oxford Nanopore Technologies' MinION sequencer is based on evolving nanopore sequencing technology to nucleic acid analyses. [37] The device is four inches long and gets power from a USB port. MinION decodes DNA directly as the molecule is drawn at the rate of 450 bases/second through a nanopore suspended in a membrane. [38]
Sequencing technologies with a different approach than second-generation platforms were first described as "third-generation" in 2008–2009. [4]There are several companies currently at the heart of third generation sequencing technology development, namely, Pacific Biosciences, Oxford Nanopore Technology, Quantapore (CA-USA), and Stratos (WA-USA).
The technique adapts the principle of resistive pulse sensing, which monitors current flow through an aperture, combined with the use of tunable nanopore technology, allowing the passage of ionic current and particles to be regulated by adjusting the pore size.
Nanopore technology relies on passing a constant electric current through a nanoscale hole immersed in an electrolytic solution. Molecules that pass through or disrupt the current by blocking the pore will generate a detectable signal when measuring current versus time. Nanopores can range from solid-state constructs to small proteins.
Oxford Nanopore sequencing technology is costly, [12] and therefore Pore-C is more expensive per run when compared to other chromatin conformation capture techniques. Pore-C throughput is relatively low when compared to other techniques, particularly due to DNA-bound proteins clogging sequencing pores.