enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    In mathematics, the eccentricity of a conic section is a non-negative real number that uniquely characterizes its shape. One can think of the eccentricity as a measure of how much a conic section deviates from being circular. In particular: The eccentricity of a circle is 0. The eccentricity of an ellipse which is not a circle is between 0 and 1.

  3. Conic constant - Wikipedia

    en.wikipedia.org/wiki/Conic_constant

    The constant is given by =, where e is the eccentricity of the conic section. The equation for a conic section with apex at the origin and tangent to the y axis is y 2 − 2 R x + ( K + 1 ) x 2 = 0 {\displaystyle y^{2}-2Rx+(K+1)x^{2}=0}

  4. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    Conic sections of varying eccentricity sharing a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated pair of lines.

  5. Focus (geometry) - Wikipedia

    en.wikipedia.org/wiki/Focus_(geometry)

    A conic is defined as the locus of points for each of which the distance to the focus divided by the distance to the directrix is a fixed positive constant, called the eccentricity e. If 0 < e < 1 the conic is an ellipse, if e = 1 the conic is a parabola, and if e > 1 the conic is a hyperbola.

  6. Generalized conic - Wikipedia

    en.wikipedia.org/wiki/Generalized_conic

    Unwrap the cone to a plane. Then the curve in the plane to which the conic section of eccentricity λ is unwrapped is a generalized conic with polar equation as specified in the definition. In the special case when k < 1, the generalized conic cannot be obtained by unwrapping a conic section. In this case there is another interpretation.

  7. Focal conics - Wikipedia

    en.wikipedia.org/wiki/Focal_conics

    Definition of focal conics A,C: vertices of the ellipse and foci of the hyperbola E,F: foci of the ellipse and vertices of the hyperbola Focal conics: two parabolas A: vertex of the red parabola and focus of the blue parabola

  8. Orbital eccentricity - Wikipedia

    en.wikipedia.org/wiki/Orbital_eccentricity

    Neptune's and Venus's have even lower eccentricities of 0.008 6 and 0.006 8 respectively, the latter being the least orbital eccentricity of any planet in the Solar System. Over hundreds of thousands of years, the eccentricity of the Earth's orbit varies from nearly 0.003 4 to almost 0.058 as a result of gravitational attractions among the planets.

  9. Confocal conic sections - Wikipedia

    en.wikipedia.org/wiki/Confocal_conic_sections

    A pencil of confocal ellipses and hyperbolas is specified by choice of linear eccentricity c (the x-coordinate of one focus) and can be parametrized by the semi-major axis a (the x-coordinate of the intersection of a specific conic in the pencil and the x-axis). When 0 < a < c the conic is a hyperbola; when c < a the conic is an ellipse.