Search results
Results from the WOW.Com Content Network
The photograph demonstrates the application of the rule of thirds. The horizon in the photograph is on the horizontal line dividing the lower third of the photo from the upper two-thirds. The tree is at the intersection of two lines, sometimes called a power point [1] or a crash point. [2]
Arrangement: for example, use of the golden mean or the rule of thirds; Lines; Rhythm; Illumination or lighting; Repetition (sometimes building into pattern; rhythm also comes into play, as does geometry) Perspective; Breaking the rules can create tension or unease, yet it can add interest to the picture if used carefully
A subdivision rule takes a tiling of the plane by polygons and turns it into a new tiling by subdividing each polygon into smaller polygons. It is finite if there are only finitely many ways that every polygon can subdivide. Each way of subdividing a tile is called a tile type. Each tile type is represented by a label (usually a letter).
Geodesic subdivisions can also be done from an augmented dodecahedron, dividing pentagons into triangles with a center point, and subdividing from that Chiral polyhedra with higher order polygonal faces can be augmented with central points and new triangle faces. Those triangles can then be further subdivided into smaller triangles for new ...
This computer art image has the fisherman positioned facing into the left-hand rabatment square. Claude Monet's painting of a poppyfield includes one tall tree at the rightmost border of the left-hand rabatment square. Rembrandt's self-portrait places the lit part of his studio within the left-hand rabatment square. The artist himself stands at ...
For any population probability distribution on finitely many values, and generally for any probability distribution with a mean and variance, it is the case that +, where Q(p) is the value of the p-quantile for 0 < p < 1 (or equivalently is the k-th q-quantile for p = k/q), where μ is the distribution's arithmetic mean, and where σ is the ...
The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.
However, there are three distinct ways of partitioning a square into three similar rectangles: [1] [2] The trivial solution given by three congruent rectangles with aspect ratio 3:1. The solution in which two of the three rectangles are congruent and the third one has twice the side length of the other two, where the rectangles have aspect ...