Search results
Results from the WOW.Com Content Network
A zero of a function f is a number x such that f(x) = 0. As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form, root-finding algorithms provide approximations to zeros.
In computing, NaN (/ n æ n /), standing for Not a Number, is a particular value of a numeric data type (often a floating-point number) which is undefined as a number, such as the result of 0/0. Systematic use of NaNs was introduced by the IEEE 754 floating-point standard in 1985, along with the representation of other non-finite quantities ...
In the IEEE 754 standard, zero is signed, meaning that there exist both a "positive zero" (+0) and a "negative zero" (−0). In most run-time environments, positive zero is usually printed as "0" and the negative zero as "-0". The two values behave as equal in numerical comparisons, but some operations return different results for +0 and −0.
In a subnormal number, since the exponent is the least that it can be, zero is the leading significant digit (0.m 1 m 2 m 3...m p−2 m p−1), allowing the representation of numbers closer to zero than the smallest normal number. A floating-point number may be recognized as subnormal whenever its exponent has the least possible value.
The exponent field is an 8-bit unsigned integer from 0 to 255, in biased form: a value of 127 represents the actual exponent zero. Exponents range from −126 to +127 (thus 1 to 254 in the exponent field), because the biased exponent values 0 (all 0s) and 255 (all 1s) are reserved for special numbers ( subnormal numbers , signed zeros ...
For systems implementing signed zero, infinities, or Not a Number (for example, IEEE floating point), it is common to implement reasonable extensions which may extend the range of values produced to include − π and −0 when y = −0. These also may return NaN or raise an exception when given a NaN argument.
It is intended for storage of floating-point values in applications where higher precision is not essential, in particular image processing and neural networks. Almost all modern uses follow the IEEE 754-2008 standard, where the 16-bit base-2 format is referred to as binary16 , and the exponent uses 5 bits.
The multiplicative identity of R[x] is the polynomial x 0; that is, x 0 times any polynomial p(x) is just p(x). [2] Also, polynomials can be evaluated by specializing x to a real number. More precisely, for any given real number r, there is a unique unital R-algebra homomorphism ev r : R[x] → R such that ev r (x) = r. Because ev r is unital ...