enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Leibniz formula for π - Wikipedia

    en.wikipedia.org/wiki/Leibniz_formula_for_π

    In mathematics, the Leibniz formula for π, named after Gottfried Wilhelm Leibniz, states that = + + = = +,. an alternating series.. It is sometimes called the Madhava–Leibniz series as it was first discovered by the Indian mathematician Madhava of Sangamagrama or his followers in the 14th–15th century (see Madhava series), [1] and was later independently rediscovered by James Gregory in ...

  3. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    A simple fraction (also known as a common fraction or vulgar fraction, where vulgar is Latin for "common") is a rational number written as a / b or ⁠ ⁠, where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include ⁠ 1 2 ⁠, − ⁠ 8 5 ⁠, ⁠ −8 5 ⁠, and ⁠ 8 −5 ⁠.

  4. Pi - Wikipedia

    en.wikipedia.org/wiki/Pi

    But every number, including π, can be represented by an infinite series of nested fractions, called a continued fraction: = + + + + + + + + Truncating the continued fraction at any point yields a rational approximation for π ; the first four of these are 3 , ⁠ 22 / 7 ⁠ , ⁠ 333 / 106 ⁠ , and ⁠ 355 / 113 ⁠ .

  5. Division by zero - Wikipedia

    en.wikipedia.org/wiki/Division_by_zero

    Multiply both sides by x to get . Subtract 1 from each side to get The right side can be factored, Dividing both sides by x − 1 yields Substituting x = 1 yields. This is essentially the same fallacious computation as the previous numerical version, but the division by zero was obfuscated because we wrote 0 as x − 1.

  6. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...

  7. Continued fraction - Wikipedia

    en.wikipedia.org/wiki/Continued_fraction

    Continued fraction. A finite regular continued fraction, where is a non-negative integer, is an integer, and is a positive integer, for . In mathematics, a continued fraction is an expression obtained through an iterative process of representing a number as the sum of its integer part and the reciprocal of another number, then writing this ...

  8. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    For example, in duodecimal, ⁠ 1 / 2 ⁠ = 0.6, ⁠ 1 / 3 ⁠ = 0.4, ⁠ 1 / 4 ⁠ = 0.3 and ⁠ 1 / 6 ⁠ = 0.2 all terminate; ⁠ 1 / 5 ⁠ = 0. 2497 repeats with period length 4, in contrast with the equivalent decimal expansion of 0.2; ⁠ 1 / 7 ⁠ = 0. 186A35 has period 6 in duodecimal, just as it does in decimal. If b is an integer base ...

  9. Farey sequence - Wikipedia

    en.wikipedia.org/wiki/Farey_sequence

    In particular F n contains all of the members of F n−1 and also contains an additional fraction for each number that is less than n and coprime to n. Thus F 6 consists of F 5 together with the fractions1 / 6 ⁠ and ⁠ 5 / 6 ⁠. The middle term of a Farey sequence F n is always ⁠ 1 / 2 ⁠, for n > 1.