Search results
Results from the WOW.Com Content Network
However, the idle process does not use up computer resources (even when stated to be running at a high percent). Its CPU time "usage" is a measure of how much CPU time is not being used by other threads. In Windows 2000 and later the threads in the System Idle Process are also used to implement CPU power saving.
Idle is a state that a computer processor is in when it is not being used by any program. Every program or task that runs on a computer system occupies a certain amount of processing time on the CPU. If the CPU has completed all tasks it is idle. Modern processors use idle time to save power.
In many applications, the CPU and other components are idle much of the time, so idle power contributes significantly to overall system power usage. When the CPU uses power management features to reduce energy use, other components, such as the motherboard and chipset, take up a larger proportion of the computer's energy.
For premium support please call: 800-290-4726 more ways to reach us
The first number is the total number of seconds the system has been up. The second number is how much of that time the machine has spent idle, in seconds. [16] On multi-core systems (and some Linux versions) the second number is the sum of the idle time accumulated by each CPU. [17]
An idle computer has a load number of 0 (the idle process is not counted). Each process using or waiting for CPU (the ready queue or run queue) increments the load number by 1. Each process that terminates decrements it by 1. Most UNIX systems count only processes in the running (on CPU) or runnable (waiting for CPU) states.
CPU time (or process time) is the amount of time that a central processing unit (CPU) was used for processing instructions of a computer program or operating system. CPU time is measured in clock ticks or seconds. Sometimes it is useful to convert CPU time into a percentage of the CPU capacity, giving the CPU usage.
At this point, the CPU sits idle. The CPU-bound process will then move back to the ready queue and be allocated the CPU. Again, all the I/O processes end up waiting in the ready queue until the CPU-bound process is done. There is a convoy effect as all the other processes wait for the one big process to get off the CPU. This effect results in ...