Ads
related to: how to solve central angle formulas in geometry
Search results
Results from the WOW.Com Content Network
Angle AOB is a central angle. A central angle is an angle whose apex (vertex) is the center O of a circle and whose legs (sides) are radii intersecting the circle in two distinct points A and B. Central angles are subtended by an arc between those two points, and the arc length is the central angle of a circle of radius one (measured in radians). [1]
The lengths of the sides a, b, c of a spherical triangle are their central angles, measured in angular units rather than linear units. (On a unit sphere, the angle (in radians) and length around the sphere are numerically the same. On other spheres, the angle (in radians) is equal to the length around the sphere divided by the radius.)
The octant of a sphere is a spherical triangle with three right angles. Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the sides and angles of spherical triangles, traditionally expressed using trigonometric functions. On the sphere, geodesics are great circles.
Thus Δφ, the angle measure of each subinterval, is equal to b − a (the total angle measure of the interval), divided by n, the number of subintervals. For each subinterval i = 1, 2, ..., n, let φ i be the midpoint of the subinterval, and construct a sector with the center at the pole, radius r(φ i), central angle Δφ and arc length r(φ ...
The arc length, from the familiar geometry of a circle, is = The area a of the circular segment is equal to the area of the circular sector minus the area of the triangular portion (using the double angle formula to get an equation in terms of ):
Draw an angle whose vertex is point V and whose sides pass through points A, B. Draw line OA. Angle ∠BOA is a central angle; call it θ. Lines OV and OA are both radii of the circle, so they have equal lengths. Therefore, triangle VOA is isosceles, so angle ∠BVA (the inscribed angle) and angle ∠VAO are equal; let each of them be denoted ...
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes.Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.
The degree of curvature is defined as the central angle to the ends of an agreed length of either an arc or a chord; [1] various lengths are commonly used in different areas of practice. This angle is also the change in forward direction as that portion of the curve is traveled.
Ads
related to: how to solve central angle formulas in geometry