enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sidereal time - Wikipedia

    en.wikipedia.org/wiki/Sidereal_time

    Sidereal time vs solar time. Above left: a distant star (the small orange star) and the Sun are at culmination, on the local meridian m. Centre: only the distant star is at culmination (a mean sidereal day). Right: a few minutes later the Sun is on the local meridian again. A solar day is complete.

  3. Solar time - Wikipedia

    en.wikipedia.org/wiki/Solar_time

    On a prograde planet like the Earth, the sidereal day is shorter than the solar day. At time 1, the Sun and a certain distant star are both overhead. At time 2, the planet has rotated 360° and the distant star is overhead again (1→2 = one sidereal day). But it is not until a little later, at time 3, that the Sun is overhead again (1→3 = one solar day). More simply, 1→2 is a complete ...

  4. Sidereal year - Wikipedia

    en.wikipedia.org/wiki/Sidereal_year

    The sidereal year differs from the solar year, "the period of time required for the ecliptic longitude of the Sun to increase 360 degrees", [2] due to the precession of the equinoxes. The sidereal year is 20 min 24.5 s longer than the mean tropical year at J2000.0 (365.242 190 402 ephemeris days). [1]

  5. Synodic day - Wikipedia

    en.wikipedia.org/wiki/Synodic_day

    A synodic day (or synodic rotation period or solar day) is the period for a celestial object to rotate once in relation to the star it is orbiting, and is the basis of solar time. The synodic day is distinguished from the sidereal day, which is one complete rotation in relation to distant stars [1] and is the basis of sidereal time.

  6. Rotation period (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Rotation_period_(astronomy)

    Rotation period with respect to distant stars, the sidereal rotation period (compared to Earth's mean Solar days) Synodic rotation period (mean Solar day) Apparent rotational period viewed from Earth Sun [i] 25.379995 days (Carrington rotation) 35 days (high latitude) 25 d 9 h 7 m 11.6 s 35 d ~28 days (equatorial) [2] Mercury: 58.6462 days [3 ...

  7. Equation of time - Wikipedia

    en.wikipedia.org/wiki/Equation_of_time

    The United States Naval Observatory states "the Equation of Time is the difference apparent solar time minus mean solar time", i.e. if the sun is ahead of the clock the sign is positive, and if the clock is ahead of the sun the sign is negative. [6] [7] The equation of time is shown in the upper graph above for a period of slightly more than a ...

  8. Universal Time - Wikipedia

    en.wikipedia.org/wiki/Universal_Time

    While originally it was mean solar time at 0° longitude, precise measurements of the Sun are difficult. Therefore, UT1 is computed from a measure of the Earth's angle with respect to the International Celestial Reference Frame (ICRF), called the Earth Rotation Angle (ERA, which serves as the replacement for Greenwich Mean Sidereal Time). UT1 ...

  9. Solar calendar - Wikipedia

    en.wikipedia.org/wiki/Solar_calendar

    The mean calendar year of such a calendar approximates the sidereal year. Leaping from one lunation to another, but one Sidereal year is the period between two occurrences of the sun, as measured by the stars' solar calendar, which is derived from the Earth's orbit around the sun every 28 years. [3]