enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eulerian path - Wikipedia

    en.wikipedia.org/wiki/Eulerian_path

    An Eulerian trail, [note 1] or Euler walk, in an undirected graph is a walk that uses each edge exactly once. If such a walk exists, the graph is called traversable or semi-eulerian. [3] An Eulerian cycle, [note 1] also called an Eulerian circuit or Euler tour, in an undirected graph is a cycle that uses each edge exactly once

  3. Cycle (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Cycle_(graph_theory)

    A directed circuit is a non-empty directed trail (e 1, e 2, ..., e n) with a vertex sequence (v 1, v 2, ..., v n, v 1). A directed cycle or simple directed circuit is a directed circuit in which only the first and last vertices are equal. [1] n is called the length of the directed circuit resp. length of the directed cycle.

  4. BEST theorem - Wikipedia

    en.wikipedia.org/wiki/BEST_theorem

    An Eulerian circuit is a directed closed trail that visits each edge exactly once. In 1736, Euler showed that G has an Eulerian circuit if and only if G is connected and the indegree is equal to outdegree at every vertex. In this case G is called Eulerian. We denote the indegree of a vertex v by deg(v).

  5. Chinese postman problem - Wikipedia

    en.wikipedia.org/wiki/Chinese_postman_problem

    When the graph has an Eulerian circuit (a closed walk that covers every edge once), that circuit is an optimal solution. Otherwise, the optimization problem is to find the smallest number of graph edges to duplicate (or the subset of edges with the minimum possible total weight) so that the resulting multigraph does have an Eulerian circuit. [1]

  6. Seven Bridges of Königsberg - Wikipedia

    en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg

    Since the graph corresponding to historical Königsberg has four nodes of odd degree, it cannot have an Eulerian path. An alternative form of the problem asks for a path that traverses all bridges and also has the same starting and ending point. Such a walk is called an Eulerian circuit or an Euler tour. Such a circuit exists if, and only if ...

  7. Path (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Path_(graph_theory)

    A trail is a walk in which all edges are distinct. [2] A path is a trail in which all vertices (and therefore also all edges) are distinct. [2] If w = (e 1, e 2, …, e n − 1) is a finite walk with vertex sequence (v 1, v 2, …, v n) then w is said to be a walk from v 1 to v n. Similarly for a trail or a path.

  8. Cycle basis - Wikipedia

    en.wikipedia.org/wiki/Cycle_basis

    The symmetric difference of two cycles is an Eulerian subgraph. In graph theory, a branch of mathematics, a cycle basis of an undirected graph is a set of simple cycles that forms a basis of the cycle space of the graph. That is, it is a minimal set of cycles that allows every even-degree subgraph to be expressed as a symmetric difference of ...

  9. Glossary of graph theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_graph_theory

    circuit A circuit may refer to a closed trail or an element of the cycle space (an Eulerian spanning subgraph). The circuit rank of a graph is the dimension of its cycle space. circumference The circumference of a graph is the length of its longest simple cycle. The graph is Hamiltonian if and only if its circumference equals its order. class 1.