enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Torsion (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Torsion_(mechanics)

    Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque. [1] [2] Torsion could be defined as strain [3] [4] or angular deformation, [5] and is measured by the angle a chosen section is rotated from its equilibrium position. [6]

  3. Bending of plates - Wikipedia

    en.wikipedia.org/wiki/Bending_of_plates

    For rectangular plates, Navier in 1820 introduced a simple method for finding the displacement and stress when a plate is simply supported. The idea was to express the applied load in terms of Fourier components, find the solution for a sinusoidal load (a single Fourier component), and then superimpose the Fourier components to get the solution ...

  4. Plate theory - Wikipedia

    en.wikipedia.org/wiki/Plate_theory

    In continuum mechanics, plate theories are mathematical descriptions of the mechanics of flat plates that draw on the theory of beams. Plates are defined as plane structural elements with a small thickness compared to the planar dimensions. [1] The typical thickness to width ratio of a plate structure is less than 0.1.

  5. Contact mechanics - Wikipedia

    en.wikipedia.org/wiki/Contact_mechanics

    Contact mechanics is the study of the deformation of solids that touch each other at one or more points. [1] [2] A central distinction in contact mechanics is between stresses acting perpendicular to the contacting bodies' surfaces (known as normal stress) and frictional stresses acting tangentially between the surfaces (shear stress).

  6. Vibration of plates - Wikipedia

    en.wikipedia.org/wiki/Vibration_of_plates

    Vibration mode of a clamped square plate. The vibration of plates is a special case of the more general problem of mechanical vibrations.The equations governing the motion of plates are simpler than those for general three-dimensional objects because one of the dimensions of a plate is much smaller than the other two.

  7. Kirchhoff–Love plate theory - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff–Love_plate_theory

    The Kirchhoff–Love theory of plates is a two-dimensional mathematical model that is used to determine the stresses and deformations in thin plates subjected to forces and moments. This theory is an extension of Euler-Bernoulli beam theory and was developed in 1888 by Love [ 1 ] using assumptions proposed by Kirchhoff .

  8. Plane stress - Wikipedia

    en.wikipedia.org/wiki/Plane_stress

    Figure 7.1 Plane stress state in a continuum. In continuum mechanics, a material is said to be under plane stress if the stress vector is zero across a particular plane. When that situation occurs over an entire element of a structure, as is often the case for thin plates, the stress analysis is considerably simplified, as the stress state can be represented by a tensor of dimension 2 ...

  9. Reissner-Mindlin plate theory - Wikipedia

    en.wikipedia.org/wiki/Reissner-Mindlin_plate_theory

    The Mindlin hypothesis implies that the displacements in the plate have the form = (,) ; =, = (,)where and are the Cartesian coordinates on the mid-surface of the undeformed plate and is the coordinate for the thickness direction, , =, are the in-plane displacements of the mid-surface, is the displacement of the mid-surface in the direction, and designate the angles which the normal to the mid ...