enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cross-validation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Cross-validation_(statistics)

    If cross-validation is used to decide which features to use, an inner cross-validation to carry out the feature selection on every training set must be performed. [30] Performing mean-centering, rescaling, dimensionality reduction, outlier removal or any other data-dependent preprocessing using the entire data set.

  3. Ensemble learning - Wikipedia

    en.wikipedia.org/wiki/Ensemble_learning

    Cross-Validation Selection can be summed up as: "try them all with the training set, and pick the one that works best". [32] Gating is a generalization of Cross-Validation Selection. It involves training another learning model to decide which of the models in the bucket is best-suited to solve the problem.

  4. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  5. Jackknife resampling - Wikipedia

    en.wikipedia.org/wiki/Jackknife_resampling

    In statistics, the jackknife (jackknife cross-validation) is a cross-validation technique and, therefore, a form of resampling. It is especially useful for bias and variance estimation. The jackknife pre-dates other common resampling methods such as the bootstrap .

  6. Multivariate adaptive regression spline - Wikipedia

    en.wikipedia.org/wiki/Multivariate_adaptive...

    Cross-validation and related techniques must be used for validating the model instead. The earth, mda, and polspline implementations do not allow missing values in predictors, but free implementations of regression trees (such as rpart and party) do allow missing values using a technique called surrogate splits.

  7. Statistical model validation - Wikipedia

    en.wikipedia.org/wiki/Statistical_model_validation

    Cross validation is a method of model validation that iteratively refits the model, each time leaving out just a small sample and comparing whether the samples left out are predicted by the model: there are many kinds of cross validation. Predictive simulation is used to compare simulated data to actual data.

  8. Feature selection - Wikipedia

    en.wikipedia.org/wiki/Feature_selection

    Filter feature selection is a specific case of a more general paradigm called structure learning.Feature selection finds the relevant feature set for a specific target variable whereas structure learning finds the relationships between all the variables, usually by expressing these relationships as a graph.

  9. Friedman test - Wikipedia

    en.wikipedia.org/wiki/Friedman_test

    When using this kind of design for a binary response, one instead uses the Cochran's Q test. The Sign test (with a two-sided alternative) is equivalent to a Friedman test on two groups. Kendall's W is a normalization of the Friedman statistic between 0 {\textstyle 0} and 1 {\textstyle 1} .