enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Coin flipping - Wikipedia

    en.wikipedia.org/wiki/Coin_flipping

    The coin toss in cricket is more important than in other games because in many situations it can lead a team winning or losing the game. Factors such as pitch conditions, weather and the time of day are considered by the team captain who wins the toss. Now there are websites such as flip a coin online which domestic sports team use to toss the ...

  3. Penney's game - Wikipedia

    en.wikipedia.org/wiki/Penney's_game

    As this card-based version is quite similar to multiple repetitions of the original coin game, the second player's advantage is greatly amplified. The probabilities are slightly different because the odds for each flip of a coin are independent while the odds of drawing a red or black card each time is dependent on previous draws. Note that HHT ...

  4. John Edmund Kerrich - Wikipedia

    en.wikipedia.org/wiki/John_Edmund_Kerrich

    Until the advent of computer simulations, Kerrich's study, published in 1946, was widely cited as evidence of the asymptotic nature of probability. It is still regarded as a classic study in empirical mathematics. 2,000 of their fair coin flip results are given by the following table, with 1 representing heads and 0 representing tails.

  5. Martingale (betting system) - Wikipedia

    en.wikipedia.org/wiki/Martingale_(betting_system)

    In this example, the probability of losing the entire bankroll and being unable to continue the martingale is equal to the probability of 6 consecutive losses: (10/19) 6 = 2.1256%. The probability of winning is equal to 1 minus the probability of losing 6 times: 1 − (10/19) 6 = 97.8744%. The expected amount won is (1 × 0.978744) = 0.978744.

  6. Law of large numbers - Wikipedia

    en.wikipedia.org/wiki/Law_of_large_numbers

    For example, a fair coin toss is a Bernoulli trial. When a fair coin is flipped once, the theoretical probability that the outcome will be heads is equal to 1 ⁄ 2. Therefore, according to the law of large numbers, the proportion of heads in a "large" number of coin flips "should be" roughly 1 ⁄ 2.

  7. Tree diagram (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Tree_diagram_(probability...

    In probability theory, a tree diagram may be used to represent a probability space. A tree diagram may represent a series of independent events (such as a set of coin flips) or conditional probabilities (such as drawing cards from a deck, without replacing the cards). [ 1 ]

  8. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    Consider a simple statistical model of a coin flip: a single parameter that expresses the "fairness" of the coin. The parameter is the probability that a coin lands heads up ("H") when tossed. can take on any value within the range 0.0 to 1.0. For a perfectly fair coin, =. Imagine flipping a fair coin twice, and observing two heads in two ...

  9. St. Petersburg paradox - Wikipedia

    en.wikipedia.org/wiki/St._Petersburg_paradox

    The St. Petersburg paradox or St. Petersburg lottery [1] is a paradox involving the game of flipping a coin where the expected payoff of the lottery game is infinite but nevertheless seems to be worth only a very small amount to the participants. The St. Petersburg paradox is a situation where a naïve decision criterion that takes only the ...