enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Checking whether a coin is fair - Wikipedia

    en.wikipedia.org/wiki/Checking_whether_a_coin_is...

    (Note: r is the probability of obtaining heads when tossing the same coin once.) Plot of the probability density f(r | H = 7, T = 3) = 1320 r 7 (1 − r) 3 with r ranging from 0 to 1. The probability for an unbiased coin (defined for this purpose as one whose probability of coming down heads is somewhere between 45% and 55%)

  3. Bertrand's box paradox - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_box_paradox

    Bertrand's box paradox: the three equally probable outcomes after the first gold coin draw. The probability of drawing another gold coin from the same box is 0 in (a), and 1 in (b) and (c). Thus, the overall probability of drawing a gold coin in the second draw is ⁠ 0 / 3 ⁠ + ⁠ 1 / 3 ⁠ + ⁠ 1 / 3 ⁠ = ⁠ 2 / 3 ⁠.

  4. Fair coin - Wikipedia

    en.wikipedia.org/wiki/Fair_coin

    In probability theory and statistics, a sequence of independent Bernoulli trials with probability 1/2 of success on each trial is metaphorically called a fair coin. One for which the probability is not 1/2 is called a biased or unfair coin. In theoretical studies, the assumption that a coin is fair is often made by referring to an ideal coin.

  5. Probability - Wikipedia

    en.wikipedia.org/wiki/Probability

    Probability is the branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur. [note 1] [1] [2] A simple example is the tossing of a fair (unbiased) coin. Since the ...

  6. St. Petersburg paradox - Wikipedia

    en.wikipedia.org/wiki/St._Petersburg_paradox

    The St. Petersburg paradox or St. Petersburg lottery [1] is a paradox involving the game of flipping a coin where the expected payoff of the lottery game is infinite but nevertheless seems to be worth only a very small amount to the participants. The St. Petersburg paradox is a situation where a naïve decision criterion that takes only the ...

  7. Penney's game - Wikipedia

    en.wikipedia.org/wiki/Penney's_game

    Player A selects a sequence of heads and tails (of length 3 or larger), and shows this sequence to player B. Player B then selects another sequence of heads and tails of the same length. Subsequently, a fair coin is tossed until either player A's or player B's sequence appears as a consecutive subsequence of the coin toss outcomes. The player ...

  8. Treasure trove of Roman coins found during construction in U.K.

    www.aol.com/treasure-trove-roman-coins-found...

    This is the third hoard of coins to be found in the area in the past 25 years, according to the BBC. In 2011, two metal detectorists found a clay pot full of 3,784 coins, the BBC said, and in 1999 ...

  9. Balance puzzle - Wikipedia

    en.wikipedia.org/wiki/Balance_puzzle

    1) Subdivide the coins in to 2 groups of 4 coins and a third group with the remaining 5 coins. 2) Test 1, Test the 2 groups of 4 coins against each other: a. If the coins balance, the odd coin is in the population of 5 and proceed to test 2a. b. The odd coin is among the population of 8 coins, proceed in the same way as in the 12 coins problem.