enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cross-validation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Cross-validation_(statistics)

    Cross-validation, [2] [3] [4] sometimes called rotation estimation [5] [6] [7] or out-of-sample testing, is any of various similar model validation techniques for assessing how the results of a statistical analysis will generalize to an independent data set. Cross-validation includes resampling and sample splitting methods that use different ...

  3. PRESS statistic - Wikipedia

    en.wikipedia.org/wiki/PRESS_statistic

    Instead of fitting only one model on all data, leave-one-out cross-validation is used to fit N models (on N observations) where for each model one data point is left out from the training set. The out-of-sample predicted value is calculated for the omitted observation in each case, and the PRESS statistic is calculated as the sum of the squares ...

  4. Regression validation - Wikipedia

    en.wikipedia.org/wiki/Regression_validation

    Cross-validation is the process of assessing how the results of a statistical analysis will generalize to an independent data set. If the model has been estimated over some, but not all, of the available data, then the model using the estimated parameters can be used to predict the held-back data.

  5. Resampling (statistics) - Wikipedia

    en.wikipedia.org/wiki/Resampling_(statistics)

    Cross-validation is a statistical method for validating a predictive model. Subsets of the data are held out for use as validating sets; a model is fit to the remaining data (a training set) and used to predict for the validation set. Averaging the quality of the predictions across the validation sets yields an overall measure of prediction ...

  6. Jackknife resampling - Wikipedia

    en.wikipedia.org/wiki/Jackknife_resampling

    In statistics, the jackknife (jackknife cross-validation) is a cross-validation technique and, therefore, a form of resampling. It is especially useful for bias and variance estimation. The jackknife pre-dates other common resampling methods such as the bootstrap .

  7. Generalization error - Wikipedia

    en.wikipedia.org/wiki/Generalization_error

    Data points were generated from the relationship y = x with white noise added to the y values. In the left column, a set of training points is shown in blue. A seventh order polynomial function was fit to the training data. In the right column, the function is tested on data sampled from the underlying joint probability distribution of x and y ...

  8. Statistical model validation - Wikipedia

    en.wikipedia.org/wiki/Statistical_model_validation

    We see that the polynomial function does not conform well to the data, which appears linear, and might invalidate this polynomial model. Commonly, statistical models on existing data are validated using a validation set, which may also be referred to as a holdout set. A validation set is a set of data points that the user leaves out when ...

  9. Hyperparameter optimization - Wikipedia

    en.wikipedia.org/wiki/Hyperparameter_optimization

    Hyperparameter optimization determines the set of hyperparameters that yields an optimal model which minimizes a predefined loss function on a given data set. [3] The objective function takes a set of hyperparameters and returns the associated loss. [3] Cross-validation is often used to estimate this generalization performance, and therefore ...