enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fluorescence microscope - Wikipedia

    en.wikipedia.org/wiki/Fluorescence_microscope

    Alternatively the intrinsic fluorescence of a sample (i.e., autofluorescence) can be used. [1] In the life sciences fluorescence microscopy is a powerful tool which allows the specific and sensitive staining of a specimen in order to detect the distribution of proteins or other molecules of interest. As a result, there is a diverse range of ...

  3. Immunofluorescence - Wikipedia

    en.wikipedia.org/wiki/Immunofluorescence

    IF can additionally be used in combination with other, non-antibody methods of fluorescent staining, e.g., the use of DAPI to label DNA. [10] [11] Examination of immunofluorescence specimens can be conducted utilizing various microscope configurations, including the epifluorescence microscope, confocal microscope, and widefield microscope. [12]

  4. Staining - Wikipedia

    en.wikipedia.org/wiki/Staining

    Staining and fluorescent tagging can serve similar purposes. Biological staining is also used to mark cells in flow cytometry, and to flag proteins or nucleic acids in gel electrophoresis. Light microscopes are used for viewing stained samples at high magnification, typically using bright-field or epi-fluorescence illumination.

  5. Laboratory diagnosis of viral infections - Wikipedia

    en.wikipedia.org/wiki/Laboratory_diagnosis_of...

    Electron microscopy is a method that can take a picture of a whole virus and can reveal its shape and structure. It is not typically used as a routine diagnostic test as it requires a highly specialized type of sample preparation, microscope and technical expertise.

  6. Fluorescence in situ hybridization - Wikipedia

    en.wikipedia.org/wiki/Fluorescence_in_situ...

    If the fluorescent signal is weak, amplification of the signal may be necessary in order to exceed the detection threshold of the microscope. Fluorescent signal strength depends on many factors such as probe labeling efficiency, the type of probe, and the type of dye. Fluorescently tagged antibodies or streptavidin are bound to the dye molecule ...

  7. Light sheet fluorescence microscopy - Wikipedia

    en.wikipedia.org/wiki/Light_sheet_fluorescence...

    In most light sheet fluorescence microscopes the detection objective and sometimes also the excitation objective are fully immersed in the sample buffer, so usually the sample and excitation/detection optics are embedded into a buffer-filled sample chamber, which can also be used to control the environmental conditions (temperature, carbon ...

  8. Direct fluorescent antibody - Wikipedia

    en.wikipedia.org/wiki/Direct_fluorescent_antibody

    As with all types of fluorescence microscopy, the correct absorption wavelength needs to be determined in order to excite the fluorophore tag attached to the antibody, and detect the fluorescence given off, which indicates which cells are positive for the presence of the virus or bacteria being detected.

  9. Fluorescence in the life sciences - Wikipedia

    en.wikipedia.org/wiki/Fluorescence_in_the_life...

    A simplified Jablonski diagram illustrating the change of energy levels.. The principle behind fluorescence is that the fluorescent moiety contains electrons which can absorb a photon and briefly enter an excited state before either dispersing the energy non-radiatively or emitting it as a photon, but with a lower energy, i.e., at a longer wavelength (wavelength and energy are inversely ...