Search results
Results from the WOW.Com Content Network
The tool comes pre-programmed with 36 different example graphs for the purpose of teaching new users about the tool and the mathematics involved. [ 15 ] As of April 2017, Desmos also released a browser-based 2D interactive geometry tool, with supporting features including the plotting of points, lines, circles, and polygons.
Any parabola can be transformed by a rigid motion (angles are not changed) into a parabola with equation =. The slope at a point of the parabola is m = 2 a x {\displaystyle m=2ax} . Replacing x gives the parametric representation of the parabola with the tangent slope as parameter: ( m 2 a , m 2 4 a ) . {\displaystyle \left({\tfrac {m}{2a ...
In the theory of quadratic forms, the parabola is the graph of the quadratic form x 2 (or other scalings), while the elliptic paraboloid is the graph of the positive-definite quadratic form x 2 + y 2 (or scalings), and the hyperbolic paraboloid is the graph of the indefinite quadratic form x 2 − y 2. Generalizations to more variables yield ...
Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.
However, the implicit function theorem gives conditions under which an implicit curve locally is given by the graph of a function (so in particular it has no self-intersections). If the defining relations are sufficiently smooth then, in such regions, implicit curves have well defined slopes, tangent lines, normal vectors, and curvature.
The Fermat spiral with polar equation = can be converted to the Cartesian coordinates (x, y) by using the standard conversion formulas x = r cos φ and y = r sin φ.Using the polar equation for the spiral to eliminate r from these conversions produces parametric equations for one branch of the curve:
As above, for e = 0, the graph is a circle, for 0 < e < 1 the graph is an ellipse, for e = 1 a parabola, and for e > 1 a hyperbola. The polar form of the equation of a conic is often used in dynamics; for instance, determining the orbits of objects revolving about the Sun. [20]
Offset curves are important, for example, in numerically controlled machining, where they describe, for example, the shape of the cut made by a round cutting tool of a two-axis machine. The shape of the cut is offset from the trajectory of the cutter by a constant distance in the direction normal to the cutter trajectory at every point.