Search results
Results from the WOW.Com Content Network
The basic rule for divisibility by 4 is that if the number formed by the last two digits in a number is divisible by 4, the original number is divisible by 4; [2] [3] this is because 100 is divisible by 4 and so adding hundreds, thousands, etc. is simply adding another number that is divisible by 4. If any number ends in a two digit number that ...
206 is both a nontotient and a noncototient. [1] 206 is an untouchable number. [2] It is the lowest positive integer (when written in English as "two hundred and six") to employ all of the vowels once only, not including Y. The other numbers sharing this property are 230, 250, 260, 602, 640, 5000, 8000, 9000, 26,000, 80,000 and 90,000.
For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21). If m is a divisor of n , then so is − m . The tables below only list positive divisors.
Prime numbers have exactly 2 divisors, and highly composite numbers are in bold. 7 is a divisor of 42 because =, so we can say It can also be said that 42 is divisible by 7, 42 is a multiple of 7, 7 divides 42, or 7 is a factor of 42. The non-trivial divisors of 6 are 2, −2, 3, −3.
Histogram of total stopping times for the numbers 1 to 10 9. Total stopping time is on the x axis, frequency on the y axis. Iteration time for inputs of 2 to 10 7. Total stopping time of numbers up to 250, 1000, 4000, 20000, 100000, 500000. Consider the following operation on an arbitrary positive integer: If the number is even, divide it by two.
A number is divisible by 4 if its penultimate digit is odd and its final digit is 2, or its penultimate digit is even and its final digit is 0 or 4. A number is divisible by 5 if the sum of its senary digits is divisible by 5 (the equivalent of casting out nines in decimal). If a number is divisible by 6, then the final digit of that number is 0.
12 (twelve) is the natural number following 11 and preceding 13.. Twelve is the 3rd superior highly composite number, [1] the 3rd colossally abundant number, [2] the 5th highly composite number, and is divisible by the numbers from 1 to 4, and 6, a large number of divisors comparatively.
The method is along the same lines as the divisibility rule for 11 using the property 10 ≡ -1 (mod 11). The two properties of 1001 are 1001 = 7 × 11 × 13 in prime factors 10 3 ≡ -1 (mod 1001) The method simultaneously tests for divisibility by any of the factors of 1001. First, the digits of the number being tested are grouped in blocks ...