Search results
Results from the WOW.Com Content Network
The Hermitian Laplacian matrix is a key tool in this context, as it is used to analyze the spectra of mixed graphs. [4] The Hermitian-adjacency matrix of a mixed graph is another important concept, as it is a Hermitian matrix that plays a role in studying the energies of mixed graphs. [5]
Other names for the conjugate transpose of a matrix are Hermitian transpose, Hermitian conjugate, adjoint matrix or transjugate. The conjugate transpose of a matrix A {\displaystyle \mathbf {A} } can be denoted by any of these symbols:
A set of three 2 × 2 complex Hermitian and unitary matrices. When combined with the I 2 identity matrix, they form an orthogonal basis for the 2 × 2 complex Hermitian matrices. Redheffer matrix: Encodes a Dirichlet convolution. Matrix entries are given by the divisor function; entires of the inverse are given by the Möbius function.
In mathematics, an EP matrix (or range-Hermitian matrix [1] or RPN matrix [2]) is a square matrix A whose range is equal to the range of its conjugate transpose A*. Another equivalent characterization of EP matrices is that the range of A is orthogonal to the nullspace of A. Thus, EP matrices are also known as RPN (Range Perpendicular to ...
In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.
It is the distribution of times the sample Hermitian covariance matrix of zero-mean independent Gaussian random variables. It has support for Hermitian positive definite matrices. [1] The complex Wishart distribution is the density of a complex-valued sample covariance matrix. Let
Applicable to: square, hermitian, positive definite matrix Decomposition: =, where is upper triangular with real positive diagonal entries Comment: if the matrix is Hermitian and positive semi-definite, then it has a decomposition of the form = if the diagonal entries of are allowed to be zero
Hermitian symmetric space, a Kähler manifold which, as a Riemannian manifold, is a Riemannian symmetric space; Hermitian transpose, the transpose of a matrix and with the complex conjugate of each entry; Hermitian variety, a generalisation of quadrics; Hermitian wavelet, a family of continuous wavelets; Non-Hermitian quantum mechanics