Search results
Results from the WOW.Com Content Network
The best known example of an uncountable set is the set of all real numbers; Cantor's diagonal argument shows that this set is uncountable. The diagonalization proof technique can also be used to show that several other sets are uncountable, such as the set of all infinite sequences of natural numbers (see: (sequence A102288 in the OEIS)), and the set of all subsets of the set ...
The set T is uncountable. The proof starts by assuming that T is countable. Then all its elements can be written in an enumeration s 1, s 2, ...
As the above summation argument shows, the Cantor set is uncountable but has Lebesgue measure 0. Since the Cantor set is the complement of a union of open sets, it itself is a closed subset of the reals, and therefore a complete metric space. Since it is also totally bounded, the Heine–Borel theorem says that it must be compact.
Cantor's first set theory article contains Georg Cantor's first theorems of transfinite set theory, which studies infinite sets and their properties. One of these theorems is his "revolutionary discovery" that the set of all real numbers is uncountably , rather than countably , infinite. [ 1 ]
Notably, is the first uncountable cardinal number that can be demonstrated within Zermelo–Fraenkel set theory not to be equal to the cardinality of the set of all real numbers: For any natural number , we can consistently assume that =, and moreover it is possible to assume that is as least as large as any cardinal number we like.
One of the earliest results in set theory, published by Cantor in 1874, was the existence of different sizes, or cardinalities, of infinite sets. [2] An infinite set is called countable if there is a function that gives a one-to-one correspondence between and the natural numbers, and is uncountable if there is no such correspondence function.
The set of rational numbers is countable, so almost all real numbers are irrational. [12] Georg Cantor's first set theory article proved that the set of algebraic numbers is countable as well, so almost all reals are transcendental. [13] [sec 6] Almost all reals are normal. [14] The Cantor set is also null. Thus, almost all reals are not in it ...
A set is countable if it can be enumerated, that is, if there exists an enumeration of it. Otherwise, it is uncountable. For example, the set of the real numbers is uncountable. A set is finite if it can be enumerated by means of a proper initial segment {1, ..., n} of the natural numbers, in which case, its cardinality is n.