enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uncountable set - Wikipedia

    en.wikipedia.org/wiki/Uncountable_set

    The best known example of an uncountable set is the set ⁠ ⁠ of all real numbers; Cantor's diagonal argument shows that this set is uncountable. The diagonalization proof technique can also be used to show that several other sets are uncountable, such as the set of all infinite sequences of natural numbers ⁠ ⁠ (see: (sequence A102288 in the OEIS)), and the set of all subsets of the set ...

  3. Cantor's diagonal argument - Wikipedia

    en.wikipedia.org/wiki/Cantor's_diagonal_argument

    A generalized form of the diagonal argument was used by Cantor to prove Cantor's theorem: for every set S, the power set of S—that is, the set of all subsets of S (here written as P(S))—cannot be in bijection with S itself. This proof proceeds as follows:

  4. Null set - Wikipedia

    en.wikipedia.org/wiki/Null_set

    The Cantor set is an example of an uncountable null set. It is uncountable because it contains all real numbers between 0 and 1 whose ternary form decimal expansion can be written using only 0’s and 2’s, and it is null because it is constructed by beginning with the closed interval of real numbers from 0 to 1 and multiplying the length by 2 ...

  5. Skolem's paradox - Wikipedia

    en.wikipedia.org/wiki/Skolem's_paradox

    One of the earliest results in set theory, published by Cantor in 1874, was the existence of different sizes, or cardinalities, of infinite sets. [2] An infinite set is called countable if there is a function that gives a one-to-one correspondence between and the natural numbers, and is uncountable if there is no such correspondence function.

  6. Infinite set - Wikipedia

    en.wikipedia.org/wiki/Infinite_set

    The set of natural numbers (whose existence is postulated by the axiom of infinity) is infinite. [1] It is the only set that is directly required by the axioms to be infinite. The existence of any other infinite set can be proved in Zermelo–Fraenkel set theory (ZFC), but only by showing that it follows from the existence of the natural numbers.

  7. Perfect set property - Wikipedia

    en.wikipedia.org/wiki/Perfect_set_property

    Let be the least uncountable ordinal.In an analog of Baire space derived from the -fold cartesian product of with itself, any closed set is the disjoint union of an -perfect set and a set of cardinality, where -closedness of a set is defined via a topological game in which members of are played.

  8. Cantor's first set theory article - Wikipedia

    en.wikipedia.org/wiki/Cantor's_first_set_theory...

    Cantor's first set theory article contains Georg Cantor's first theorems of transfinite set theory, which studies infinite sets and their properties. One of these theorems is his "revolutionary discovery" that the set of all real numbers is uncountably , rather than countably , infinite. [ 1 ]

  9. Set (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Set_(mathematics)

    A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...