Search results
Results from the WOW.Com Content Network
The best known example of an uncountable set is the set of all real numbers; Cantor's diagonal argument shows that this set is uncountable. The diagonalization proof technique can also be used to show that several other sets are uncountable, such as the set of all infinite sequences of natural numbers (see: (sequence A102288 in the OEIS)), and the set of all subsets of the set ...
A generalized form of the diagonal argument was used by Cantor to prove Cantor's theorem: for every set S, the power set of S—that is, the set of all subsets of S (here written as P(S))—cannot be in bijection with S itself. This proof proceeds as follows:
The Cantor set is an example of an uncountable null set. It is uncountable because it contains all real numbers between 0 and 1 whose ternary form decimal expansion can be written using only 0’s and 2’s, and it is null because it is constructed by beginning with the closed interval of real numbers from 0 to 1 and multiplying the length by 2 ...
One of the earliest results in set theory, published by Cantor in 1874, was the existence of different sizes, or cardinalities, of infinite sets. [2] An infinite set is called countable if there is a function that gives a one-to-one correspondence between and the natural numbers, and is uncountable if there is no such correspondence function.
The set of natural numbers (whose existence is postulated by the axiom of infinity) is infinite. [1] It is the only set that is directly required by the axioms to be infinite. The existence of any other infinite set can be proved in Zermelo–Fraenkel set theory (ZFC), but only by showing that it follows from the existence of the natural numbers.
Let be the least uncountable ordinal.In an analog of Baire space derived from the -fold cartesian product of with itself, any closed set is the disjoint union of an -perfect set and a set of cardinality, where -closedness of a set is defined via a topological game in which members of are played.
Cantor's first set theory article contains Georg Cantor's first theorems of transfinite set theory, which studies infinite sets and their properties. One of these theorems is his "revolutionary discovery" that the set of all real numbers is uncountably , rather than countably , infinite. [ 1 ]
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...