Search results
Results from the WOW.Com Content Network
In statistics, point estimation involves the use of sample data to calculate a single value (known as a point estimate since it identifies a point in some parameter space) which is to serve as a "best guess" or "best estimate" of an unknown population parameter (for example, the population mean).
For example, a triangular distribution might be used, depending on the application. In three-point estimation, three figures are produced initially for every distribution that is required, based on prior experience or best-guesses: a = the best-case estimate; m = the most likely estimate; b = the worst-case estimate
In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule (the estimator), the quantity of interest (the estimand) and its result (the estimate) are distinguished. [1] For example, the sample mean is a commonly used estimator of the population mean. There are point and interval ...
Based on this sample, the estimated population mean is 10, and the unbiased estimate of population variance is 30. Both the naïve algorithm and two-pass algorithm compute these values correctly. Next consider the sample (10 8 + 4, 10 8 + 7, 10 8 + 13, 10 8 + 16), which gives rise to the same estimated variance as the first sample. The two-pass ...
This is one of the motivations of robust statistics – an estimator such as the sample mean is an efficient estimator of the population mean of a normal distribution, for example, but can be an inefficient estimator of a mixture distribution of two normal distributions with the same mean and different variances. For example, if a distribution ...
Given an r-sample statistic, one can create an n-sample statistic by something similar to bootstrapping (taking the average of the statistic over all subsamples of size r). This procedure is known to have certain good properties and the result is a U-statistic. The sample mean and sample variance are of this form, for r = 1 and r = 2.
The resulting point estimate is therefore like a weighted average of the sample mean ¯ and the prior mean =. This turns out to be a general feature of empirical Bayes; the point estimates for the prior (i.e. mean) will look like a weighted averages of the sample estimate and the prior estimate (likewise for estimates of the variance).
However, the sample standard deviation is not unbiased for the population standard deviation – see unbiased estimation of standard deviation. Further, for other distributions the sample mean and sample variance are not in general MVUEs – for a uniform distribution with unknown upper and lower bounds, the mid-range is the MVUE for the ...