Search results
Results from the WOW.Com Content Network
The number of permutations of n with k ascents is (by definition) the Eulerian number ; this is also the number of permutations of n with k descents. Some authors however define the Eulerian number n k {\displaystyle \textstyle \left\langle {n \atop k}\right\rangle } as the number of permutations with k ascending runs, which corresponds to k ...
Other names include the permutation symbol, antisymmetric symbol, or alternating symbol, which refer to its antisymmetric property and definition in terms of permutations. The standard letters to denote the Levi-Civita symbol are the Greek lower case epsilon ε or ϵ , or less commonly the Latin lower case e .
In combinatorics, the Eulerian number (,) is the number of permutations of the numbers 1 to in which exactly elements are greater than the previous element (permutations with "ascents"). Leonhard Euler investigated them and associated polynomials in his 1755 book Institutiones calculi differentialis .
A cyclic permutation consisting of a single 8-cycle. There is not widespread consensus about the precise definition of a cyclic permutation. Some authors define a permutation σ of a set X to be cyclic if "successive application would take each object of the permuted set successively through the positions of all the other objects", [1] or, equivalently, if its representation in cycle notation ...
In mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter (unlike permutations).For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange.
It is a classical result of Jordan that the symmetric and alternating groups (of degree k and k + 2 respectively), and M 12 and M 11 are the only sharply k-transitive permutation groups for k at least 4. Important examples of multiply transitive groups are the 2-transitive groups and the Zassenhaus groups.
A cycle of length k is a permutation f for which there exists an element x in {1, ..., n} such that x, f(x), f 2 (x), ..., f k (x) = x are the only elements moved by f; it conventionally is required that k ≥ 2 since with k = 1 the element x itself would not be moved either. The permutation h defined by
A permutation group is a subgroup of a symmetric group; that is, its elements are permutations of a given set. It is thus a subset of a symmetric group that is closed under composition of permutations, contains the identity permutation, and contains the inverse permutation of each of its elements. [2]