Search results
Results from the WOW.Com Content Network
The electron Zeeman interaction describes the interaction between an electron spin and the applied magnetic field. The nuclear Zeeman interaction is the interaction of the magnetic moment of the proton with an applied magnetic field. The hyperfine interaction is the coupling between the electron spin and the proton's nuclear spin.
Electron paramagnetic resonance (EPR) or electron spin resonance (ESR) spectroscopy is a method for studying materials that have unpaired electrons. The basic concepts of EPR are analogous to those of nuclear magnetic resonance (NMR), but the spins excited are those of the electrons instead of the atomic nuclei .
Bruker 700 MHz nuclear magnetic resonance (NMR) spectrometer. Nuclear Magnetic Resonance (NMR) basic principles. Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are disturbed by a weak oscillating magnetic field (in the near field [1]) and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic ...
Chemical shift values depend on the degree of electron bond polarization between nearest-neighbor atoms. A specific chemical shift is the difference in BE values of one specific chemical state versus the BE of one form of the pure element, or of a particular agreed-upon chemical state of that element. Component peaks derived from peak-fitting a ...
Nuclear quadrupole resonance spectroscopy or NQR is a chemical analysis technique related to nuclear magnetic resonance . Unlike NMR, NQR transitions of nuclei can be detected in the absence of a magnetic field , and for this reason NQR spectroscopy is referred to as " zero Field NMR ".
Nuclear magnetic resonance structure determination generates an ensemble of structures. The structures will converge only if the data is sufficient to dictate a specific fold. In these structures, it is the case for only a part of the structure.
The Rabi frequency should not be confused with the field's own frequency. Since many atomic nuclei species can behave as a magnetic dipole, this resonance technique is the basis of nuclear magnetic resonance, including nuclear magnetic resonance imaging and nuclear magnetic resonance spectroscopy.
In physics and chemistry, specifically in nuclear magnetic resonance (NMR), magnetic resonance imaging (MRI), and electron spin resonance (ESR), the Bloch equations are a set of macroscopic equations that are used to calculate the nuclear magnetization M = (M x, M y, M z) as a function of time when relaxation times T 1 and T 2 are present.