Search results
Results from the WOW.Com Content Network
A reflection in a line is an opposite isometry, like R 1 or R 2 on the image. Translation T is a direct isometry: a rigid motion. [1] In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective.
In mathematics, the isometry group of a metric space is the set of all bijective isometries (that is, bijective, distance-preserving maps) from the metric space onto itself, with the function composition as group operation. [1] Its identity element is the identity function. [2] The elements of the isometry group are sometimes called motions of ...
Suppose that τ is a linear isometry from I 0 (S) into the degree 0 characters of G. Then τ is coherent unless either H is an elementary abelian group and N/H acts simply transitively on its non-identity elements (in which case I 0 (S) is zero) or H is a non-abelian p-group for some prime p whose abelianization has order at most 4|N/H| 2 +1.
In mathematics, a unitary transformation is a linear isomorphism that preserves the inner product: the inner product of two vectors before the transformation is equal to their inner product after the transformation.
Since linear motion is a motion in a single dimension, the distance traveled by an object in particular direction is the same as displacement. [4] The SI unit of displacement is the metre . [ 5 ] [ 6 ] If x 1 {\displaystyle x_{1}} is the initial position of an object and x 2 {\displaystyle x_{2}} is the final position, then mathematically the ...
It is a linear isometry at the tangent space of every point on (), that is, it is an isometry on the infinitesimal patches. It preserves the curvature tensor at the tangent space of every point on B r ( x ) {\displaystyle B_{r}(x)} , that is, it preserves how the infinitesimal patches fit together.
In mathematical functional analysis a partial isometry is a linear map between Hilbert spaces such that it is an isometry on the orthogonal complement of its kernel. The orthogonal complement of its kernel is called the initial subspace and its range is called the final subspace. Partial isometries appear in the polar decomposition.
An isometry V is said to be pure if, in the notation of the above proof, = {}. The multiplicity of a pure isometry V is the dimension of the kernel of V*, i.e. the cardinality of the index set A in the Wold decomposition of V. In other words, a pure isometry of multiplicity N takes the form