enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Opposite category - Wikipedia

    en.wikipedia.org/wiki/Opposite_category

    In category theory, a branch of mathematics, the opposite category or dual category C op of a given category C is formed by reversing the morphisms, i.e. interchanging the source and target of each morphism. Doing the reversal twice yields the original category, so the opposite of an opposite category is the original category itself.

  3. Dual (category theory) - Wikipedia

    en.wikipedia.org/wiki/Dual_(category_theory)

    In category theory, a branch of mathematics, duality is a correspondence between the properties of a category C and the dual properties of the opposite category C op.Given a statement regarding the category C, by interchanging the source and target of each morphism as well as interchanging the order of composing two morphisms, a corresponding dual statement is obtained regarding the opposite ...

  4. Anticommutative property - Wikipedia

    en.wikipedia.org/wiki/Anticommutative_property

    In mathematics, anticommutativity is a specific property of some non-commutative mathematical operations.Swapping the position of two arguments of an antisymmetric operation yields a result which is the inverse of the result with unswapped arguments.

  5. Infimum and supremum - Wikipedia

    en.wikipedia.org/wiki/Infimum_and_supremum

    The least-upper-bound property is an example of the aforementioned completeness properties which is typical for the set of real numbers. This property is sometimes called Dedekind completeness . If an ordered set S {\displaystyle S} has the property that every nonempty subset of S {\displaystyle S} having an upper bound also has a least upper ...

  6. Hom functor - Wikipedia

    en.wikipedia.org/wiki/Hom_functor

    In mathematics, specifically in category theory, hom-sets (i.e. sets of morphisms between objects) give rise to important functors to the category of sets. These functors are called hom-functors and have numerous applications in category theory and other branches of mathematics.

  7. Property (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Property_(mathematics)

    In mathematics, a property is any characteristic that applies to a given set. [1] Rigorously, a property p defined for all elements of a set X is usually defined as a function p: X → {true, false}, that is true whenever the property holds; or, equivalently, as the subset of X for which p holds; i.e. the set {x | p(x) = true}; p is its indicator function.

  8. Antisymmetric relation - Wikipedia

    en.wikipedia.org/wiki/Antisymmetric_relation

    A term's definition may require additional properties that are not listed in this table. In mathematics , a binary relation R {\displaystyle R} on a set X {\displaystyle X} is antisymmetric if there is no pair of distinct elements of X {\displaystyle X} each of which is related by R {\displaystyle R} to the other.

  9. Glossary of mathematical jargon - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    A property holds "generically" on a set if the set satisfies some (context-dependent) notion of density, or perhaps if its complement satisfies some (context-dependent) notion of smallness. For example, a property which holds on a dense G δ (intersection of countably many open sets) is said to hold generically.