enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Model-free (reinforcement learning) - Wikipedia

    en.wikipedia.org/wiki/Model-free_(reinforcement...

    In reinforcement learning (RL), a model-free algorithm is an algorithm which does not estimate the transition probability distribution (and the reward function) associated with the Markov decision process (MDP), [1] which, in RL, represents the problem to be solved. The transition probability distribution (or transition model) and the reward ...

  3. State–action–reward–state–action - Wikipedia

    en.wikipedia.org/wiki/State–action–reward...

    State–action–reward–state–action (SARSA) is an algorithm for learning a Markov decision process policy, used in the reinforcement learning area of machine learning.It was proposed by Rummery and Niranjan in a technical note [1] with the name "Modified Connectionist Q-Learning" (MCQ-L).

  4. Markov decision process - Wikipedia

    en.wikipedia.org/wiki/Markov_decision_process

    The difference between learning automata and Q-learning is that the former technique omits the memory of Q-values, but updates the action probability directly to find the learning result. Learning automata is a learning scheme with a rigorous proof of convergence. [21] In learning automata theory, a stochastic automaton consists of:

  5. Mathematical model - Wikipedia

    en.wikipedia.org/wiki/Mathematical_model

    One of the popular examples in computer science is the mathematical models of various machines, an example is the deterministic finite automaton (DFA) which is defined as an abstract mathematical concept, but due to the deterministic nature of a DFA, it is implementable in hardware and software for solving various specific problems. For example ...

  6. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    Decision tree learning is a method commonly used in data mining. [3] The goal is to create a model that predicts the value of a target variable based on several input variables. A decision tree is a simple representation for classifying examples.

  7. Determinism - Wikipedia

    en.wikipedia.org/wiki/Determinism

    To abandon this assumption would require the construction of a non-local hidden variable theory. Therefore, it is possible to augment quantum mechanics with non-local hidden variables to achieve a deterministic theory that is in agreement with experiment. [91] An example is the Bohm interpretation of quantum mechanics. Bohm's Interpretation ...

  8. Latent and observable variables - Wikipedia

    en.wikipedia.org/wiki/Latent_and_observable...

    Examples of latent variables from the field of economics include quality of life, business confidence, morale, happiness and conservatism: these are all variables which cannot be measured directly. But linking these latent variables to other, observable variables, the values of the latent variables can be inferred from measurements of the ...

  9. Behavioural change theories - Wikipedia

    en.wikipedia.org/wiki/Behavioural_change_theories

    Each behavioural change theory or model focuses on different factors in attempting to explain behaviour change. Of the many that exist, the most prevalent are learning theories, social cognitive theory, theories of reasoned action and planned behaviour, transtheoretical model of behavior change, the health action process approach, and the BJ Fogg model of behavior change.

  1. Related searches other words for deterministic change model of learning examples chart of values

    what is a deterministic modelprobabilistic vs deterministic model
    deterministic model wikipediawhat is a determinant model