enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sobolev inequality - Wikipedia

    en.wikipedia.org/wiki/Sobolev_inequality

    The inequality expressing this fact has constants that do not involve the dimension of the space and, thus, the inequality holds in the setting of a Gaussian measure on an infinite-dimensional space. It is now known that logarithmic Sobolev inequalities hold for many different types of measures, not just Gaussian measures.

  3. Sobolev mapping - Wikipedia

    en.wikipedia.org/wiki/Sobolev_mapping

    In mathematics, a Sobolev mapping is a mapping between manifolds which has smoothness in some sense. Sobolev mappings appear naturally in manifold-constrained problems in the calculus of variations and partial differential equations , including the theory of harmonic maps .

  4. Gagliardo–Nirenberg interpolation inequality - Wikipedia

    en.wikipedia.org/wiki/Gagliardo–Nirenberg...

    The Gagliardo-Nirenberg inequality generalizes a collection of well-known results in the field of functional analysis. Indeed, given a suitable choice of the seven parameters appearing in the statement of the theorem, one obtains several useful and recurring inequalities in the theory of partial differential equations:

  5. Poincaré inequality - Wikipedia

    en.wikipedia.org/wiki/Poincaré_inequality

    In mathematics, the Poincaré inequality [1] is a result in the theory of Sobolev spaces, named after the French mathematician Henri Poincaré. The inequality allows one to obtain bounds on a function using bounds on its derivatives and the geometry of its domain of definition.

  6. Trace operator - Wikipedia

    en.wikipedia.org/wiki/Trace_operator

    A function defined on a rectangle (top figure, in red), and its trace (bottom figure, in red). In mathematics, the trace operator extends the notion of the restriction of a function to the boundary of its domain to "generalized" functions in a Sobolev space.

  7. Trudinger's theorem - Wikipedia

    en.wikipedia.org/wiki/Trudinger's_theorem

    In mathematical analysis, Trudinger's theorem or the Trudinger inequality (also sometimes called the Moser–Trudinger inequality) is a result of functional analysis on Sobolev spaces. It is named after Neil Trudinger (and Jürgen Moser). It provides an inequality between a certain Sobolev space norm and an Orlicz space norm of a

  8. Sobolev space - Wikipedia

    en.wikipedia.org/wiki/Sobolev_space

    Intuitively, a Sobolev space is a space of functions possessing sufficiently many derivatives for some application domain, such as partial differential equations, and equipped with a norm that measures both the size and regularity of a function. Sobolev spaces are named after the Russian mathematician Sergei Sobolev.

  9. Gårding's inequality - Wikipedia

    en.wikipedia.org/wiki/Gårding's_inequality

    The Lax–Milgram lemma ensures that if the bilinear form B is both continuous and elliptic with respect to the norm on H 0 1 (Ω), then, for each f ∈ L 2 (Ω), a unique solution u must exist in H 0 1 (Ω). The hypotheses of Gårding's inequality are easy to verify for the Laplace operator Δ, so there exist constants C and G ≥ 0