Search results
Results from the WOW.Com Content Network
FCCS is an extension of the fluorescence correlation spectroscopy (FCS) method that uses two fluorescent molecules instead of one that emits different colours. The technique measures coincident green and red intensity fluctuations of distinct molecules that correlate if green and red labelled particles move together through a predefined confocal volume. [2]
Dual color fluorescence cross-correlation spectroscopy (FCCS) measures interactions by cross-correlating two or more fluorescent channels (one channel for each reactant), which distinguishes interactions more sensitively than FCS, particularly when the mass change in the reaction is small.
Fluorescence spectroscopy (also known as fluorimetry or spectrofluorometry) is a type of electromagnetic spectroscopy that analyzes fluorescence from a sample. It involves using a beam of light, usually ultraviolet light , that excites the electrons in molecules of certain compounds and causes them to emit light; typically, but not necessarily ...
A simplified Jablonski diagram illustrating the change of energy levels.. The principle behind fluorescence is that the fluorescent moiety contains electrons which can absorb a photon and briefly enter an excited state before either dispersing the energy non-radiatively or emitting it as a photon, but with a lower energy, i.e., at a longer wavelength (wavelength and energy are inversely ...
The concept of a coarsely-ruled grating used at grazing angles was discovered by Albert Michelson in 1898, [1] where he referred to it as an "echelon". However, it was not until 1923 that echelle spectrometers began to take on their characteristic form, in which the high-resolution grating is used in tandem with a crossed low-dispersion grating.
The Correlation Spectroscopy experiment operates by correlating nuclei coupled to each other through scalar coupling, also known as J-coupling. [8] This coupling is the interaction between nuclear spins connected by bonds, typically observed between nuclei that are 2-3 bonds apart (e.g., vicinal protons).
Spectroscopy, which studies the interaction between electromagnetic radiation and matter (absorption, dispersion or emission). [ 8 ] [ 9 ] Spectroelectrochemistry provides molecular, thermodynamic and kinetic information of reagents, products and/or intermediates involved in the electron transfer process.
It was based on the same principle as the spectroscope, but it had a camera in place of the viewing tube. In recent years, the electronic circuits built around the photomultiplier tube have replaced the camera, allowing real-time spectrographic analysis with far greater accuracy. Arrays of photosensors are also used in place of film in ...