Search results
Results from the WOW.Com Content Network
The quotient group is the same idea, although one ends up with a group for a final answer instead of a number because groups have more structure than an arbitrary collection of objects: in the quotient / , the group structure is used to form a natural "regrouping".
This has the intuitive meaning that the images of x and y are supposed to be equal in the quotient group. Thus, for example, r n in the list of relators is equivalent with =. [1] For a finite group G, it is possible to build a presentation of G from the group multiplication table, as follows.
quotient group Given a group G and a normal subgroup N of G, the quotient group is the set G / N of left cosets {aN : a ∈ G} together with the operation aN • bN = abN. The relationship between normal subgroups, homomorphisms, and factor groups is summed up in the fundamental theorem on homomorphisms.
A rational number can be defined as the quotient of two integers (as long as the denominator is non-zero). A more detailed definition goes as follows: [10] A real number r is rational, if and only if it can be expressed as a quotient of two integers with a nonzero denominator. A real number that is not rational is irrational.
A ratio distribution (also known as a quotient distribution) is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two (usually independent ) random variables X and Y , the distribution of the random variable Z that is formed as the ratio Z = X / Y is a ratio ...
In mathematics, a simple group is a nontrivial group whose only normal subgroups are the trivial group and the group itself. A group that is not simple can be broken into two smaller groups, namely a nontrivial normal subgroup and the corresponding quotient group .
Property (T) is preserved under quotients: if G has property (T) and H is a quotient group of G then H has property (T). Equivalently, if a homomorphic image of a group G does not have property (T) then G itself does not have property (T). If G has property (T) then G/[G, G] is compact. Any countable discrete group with property (T) is finitely ...
If G is a finitely generated group and Φ(G) ≤ G is the Frattini subgroup of G (which is always normal in G so that the quotient group G/Φ(G) is defined) then rank(G) = rank(G/Φ(G)). [1] If G is the fundamental group of a closed (that is compact and without boundary) connected 3-manifold M then rank(G)≤g(M), where g(M) is the Heegaard ...