enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hendecagon - Wikipedia

    en.wikipedia.org/wiki/Hendecagon

    Symmetries of a regular hendecagon. Vertices are colored by their symmetry positions. Blue mirror lines are drawn through vertices and edge. Gyration orders are given in the center. The regular hendecagon has Dih 11 symmetry, order 22. Since 11 is a prime number there is one subgroup with dihedral symmetry: Dih 1, and 2 cyclic group symmetries ...

  3. Hendecagram - Wikipedia

    en.wikipedia.org/wiki/Hendecagram

    The star in this scroll is not one of the regular forms of the hendecagram, but instead uses lines that connect the vertices of a hendecagon to nearly-opposite midpoints of the hendecagon's edges. [ 8 ] 11-pointed star Girih patterns are also used on the exterior of the Momine Khatun Mausoleum ; Eric Broug writes that its pattern "can be ...

  4. List of polygons - Wikipedia

    en.wikipedia.org/wiki/List_of_polygons

    A pentagon is a five-sided polygon. A regular pentagon has 5 equal edges and 5 equal angles. In geometry, a polygon is traditionally a plane figure that is bounded by a finite chain of straight line segments closing in a loop to form a closed chain.

  5. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    The 5 Platonic solids are called a tetrahedron, hexahedron, octahedron, dodecahedron and icosahedron with 4, 6, 8, 12, and 20 sides respectively. The regular hexahedron is a cube . Table of polyhedra

  6. Decagon - Wikipedia

    en.wikipedia.org/wiki/Decagon

    The regular decagon has Dih 10 symmetry, order 20. There are 3 subgroup dihedral symmetries: Dih 5, Dih 2, and Dih 1, and 4 cyclic group symmetries: Z 10, Z 5, Z 2, and Z 1. These 8 symmetries can be seen in 10 distinct symmetries on the decagon, a larger number because the lines of reflections can either pass through vertices or edges.

  7. Apeirogon - Wikipedia

    en.wikipedia.org/wiki/Apeirogon

    Given a point A 0 in a Euclidean space and a translation S, define the point A i to be the point obtained from i applications of the translation S to A 0, so A i = S i (A 0).The set of vertices A i with i any integer, together with edges connecting adjacent vertices, is a sequence of equal-length segments of a line, and is called the regular apeirogon as defined by H. S. M. Coxeter.

  8. Rhombic dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedron

    It has 8 vertices adjusted in or out in alternate sets of 4, with the limiting case a tetrahedral envelope. Variations can be parametrized by (a,b), where b and a depend on each other such that the tetrahedron defined by the four vertices of a face has volume zero, i.e. is a planar face. (1,1) is the rhombic solution.

  9. Archimedean solid - Wikipedia

    en.wikipedia.org/wiki/Archimedean_solid

    The Archimedean solids are a set of thirteen convex polyhedra whose faces are regular polygons, but not all alike, and whose vertices are all symmetric to each other. The solids were named after Archimedes, although he did not claim credit for them. They belong to the class of uniform polyhedra, the polyhedra with regular faces and symmetric ...