enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hexagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Hexagonal_tiling

    The honeycomb conjecture states that hexagonal tiling is the best way to divide a surface into regions of equal area with the least total perimeter. The optimal three-dimensional structure for making honeycomb (or rather, soap bubbles) was investigated by Lord Kelvin , who believed that the Kelvin structure (or body-centered cubic lattice) is ...

  3. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    The most famous of these problems, squaring the circle, otherwise known as the quadrature of the circle, involves constructing a square with the same area as a given circle using only straightedge and compass. Squaring the circle has been proved impossible, as it involves generating a transcendental number, that is, √ π.

  4. Honeycomb conjecture - Wikipedia

    en.wikipedia.org/wiki/Honeycomb_conjecture

    [1] [2] It is also related to the densest circle packing of the plane, in which every circle is tangent to six other circles, which fill just over 90% of the area of the plane. The case when the problem is restricted to a square grid was solved in 1989 by Jaigyoung Choe who proved that the optimal figure is an irregular hexagon. [4] [5]

  5. Dividing a circle into areas - Wikipedia

    en.wikipedia.org/wiki/Dividing_a_circle_into_areas

    The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.

  6. Circle packing - Wikipedia

    en.wikipedia.org/wiki/Circle_packing

    The most efficient way to pack different-sized circles together is not obvious. In geometry, circle packing is the study of the arrangement of circles (of equal or varying sizes) on a given surface such that no overlapping occurs and so that no circle can be enlarged without creating an overlap.

  7. Constructible polygon - Wikipedia

    en.wikipedia.org/wiki/Constructible_polygon

    If p = 2, draw a q-gon and bisect one of its central angles. From this, a 2q-gon can be constructed. If p > 2, inscribe a p-gon and a q-gon in the same circle in such a way that they share a vertex. Because p and q are coprime, there exists integers a and b such that ap + bq = 1. Then 2aπ/q + 2bπ/p = 2π/pq. From this, a pq-gon can be ...

  8. Polyhex (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Polyhex_(mathematics)

    One example self-tiling with a pentahex. All of the polyhexes with fewer than five hexagons can form at least one regular plane tiling. In addition, the plane tilings of the dihex and straight polyhexes are invariant under 180 degrees rotation or reflection parallel or perpendicular to the long axis of the dihex (order 2 rotational and order 4 reflection symmetry), and the hexagon tiling and ...

  9. Geodesic polyhedron - Wikipedia

    en.wikipedia.org/wiki/Geodesic_polyhedron

    Geodesic subdivisions can also be done from an augmented dodecahedron, dividing pentagons into triangles with a center point, and subdividing from that Chiral polyhedra with higher order polygonal faces can be augmented with central points and new triangle faces.