Search results
Results from the WOW.Com Content Network
A linear operator : between two topological vector spaces (TVSs) is called a bounded linear operator or just bounded if whenever is bounded in then () is bounded in . A subset of a TVS is called bounded (or more precisely, von Neumann bounded ) if every neighborhood of the origin absorbs it.
Variable-binding operators are logical operators that occur in almost every formal language. A binding operator Q takes two arguments: a variable v and an expression P, and when applied to its arguments produces a new expression Q(v, P). The meaning of binding operators is supplied by the semantics of the language and does not concern us here.
A linear map is "bounded on a neighborhood" (of some point) if and only if it is locally bounded at every point of its domain, in which case it is necessarily continuous [2] (even if its domain is not a normed space) and thus also bounded (because a continuous linear operator is always a bounded linear operator). [6]
Then a linear operator from U to V is called bounded if there exists c > 0 such that ‖ ‖ ‖ ‖ for every x in U. Bounded operators form a vector space. Bounded operators form a vector space.
This is a list of operators in the C and C++ programming languages.. All listed operators are in C++ and lacking indication otherwise, in C as well. Some tables include a "In C" column that indicates whether an operator is also in C. Note that C does not support operator overloading.
Let : a function between topological vector spaces is said to be a locally bounded function if every point of has a neighborhood whose image under is bounded. The following theorem relates local boundedness of functions with the local boundedness of topological vector spaces:
A bounded linear operator T : X → Y is called completely continuous if, for every weakly convergent sequence from X, the sequence () is norm-convergent in Y (Conway 1985, §VI.3). Compact operators on a Banach space are always completely continuous.
Since the graph of T is closed, the proof reduces to the case when : is a bounded operator between Banach spaces. Now, factors as / .Dually, ′ is ′ () ′ ′ (/ ) ′ ′.