enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Srinivasa Ramanujan - Wikipedia

    en.wikipedia.org/wiki/Srinivasa_Ramanujan

    Srinivasa Ramanujan Aiyangar [a] (22 December 1887 – 26 April 1920) was an Indian mathematician.Often regarded as one of the greatest mathematicians of all time, though he had almost no formal training in pure mathematics, he made substantial contributions to mathematical analysis, number theory, infinite series, and continued fractions, including solutions to mathematical problems then ...

  3. Ramanujan's congruences - Wikipedia

    en.wikipedia.org/wiki/Ramanujan's_congruences

    In plain words, e.g., the first congruence means that If a number is 4 more than a multiple of 5, i.e. it is in the sequence 4, 9, 14, 19, 24, 29, . . . then the number of its partitions is a multiple of 5. Later other congruences of this type were discovered, for numbers and for Tau-functions.

  4. Ramanujan summation - Wikipedia

    en.wikipedia.org/wiki/Ramanujan_summation

    Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series.Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.

  5. Ramanujan theta function - Wikipedia

    en.wikipedia.org/wiki/Ramanujan_theta_function

    In mathematics, particularly q-analog theory, the Ramanujan theta function generalizes the form of the Jacobi theta functions, while capturing their general properties. In particular, the Jacobi triple product takes on a particularly elegant form when written in terms of the Ramanujan theta. The function is named after mathematician Srinivasa ...

  6. Elementary Number Theory, Group Theory and Ramanujan Graphs

    en.wikipedia.org/wiki/Elementary_Number_Theory...

    Its authors have divided Elementary Number Theory, Group Theory and Ramanujan Graphs into four chapters. The first of these provides background in graph theory, including material on the girth of graphs (the length of the shortest cycle), on graph coloring, and on the use of the probabilistic method to prove the existence of graphs for which both the girth and the number of colors needed are ...

  7. Logical intuition - Wikipedia

    en.wikipedia.org/wiki/Logical_intuition

    Logical Intuition, or mathematical intuition or rational intuition, is a series of instinctive foresight, know-how, and savviness often associated with the ability to perceive logical or mathematical truth—and the ability to solve mathematical challenges efficiently. [1]

  8. Ramanujan–Sato series - Wikipedia

    en.wikipedia.org/wiki/Ramanujan–Sato_series

    In mathematics, a Ramanujan–Sato series [1] [2] generalizes Ramanujan’s pi formulas such as, = = ()!! + to the form = = + by using other well-defined sequences of integers obeying a certain recurrence relation, sequences which may be expressed in terms of binomial coefficients (), and ,, employing modular forms of higher levels.

  9. Ramanujan's sum - Wikipedia

    en.wikipedia.org/wiki/Ramanujan's_sum

    where the a k ∈ C, is called a Ramanujan expansion [12] of f (n). Ramanujan found expansions of some of the well-known functions of number theory. All of these results are proved in an "elementary" manner (i.e. only using formal manipulations of series and the simplest results about convergence).