enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Allosteric regulation - Wikipedia

    en.wikipedia.org/wiki/Allosteric_regulation

    Allosteric regulation of an enzyme. In the fields of biochemistry and pharmacology an allosteric regulator (or allosteric modulator) is a substance that binds to a site on an enzyme or receptor distinct from the active site, resulting in a conformational change that alters the protein's activity, either enhancing or inhibiting its function.

  3. Transcriptional regulation - Wikipedia

    en.wikipedia.org/wiki/Transcriptional_regulation

    In molecular biology and genetics, transcriptional regulation is the means by which a cell regulates the conversion of DNA to RNA (transcription), thereby orchestrating gene activity. A single gene can be regulated in a range of ways, from altering the number of copies of RNA that are transcribed, to the temporal control of when the gene is ...

  4. Bacterial translation - Wikipedia

    en.wikipedia.org/wiki/Bacterial_translation

    The translation machinery works relatively slowly compared to the enzyme systems that catalyze DNA replication. Proteins in bacteria are synthesized at a rate of only 18 amino acid residues per second, whereas bacterial replisomes synthesize DNA at a rate of 1000 nucleotides per second.

  5. Allosteric enzyme - Wikipedia

    en.wikipedia.org/wiki/Allosteric_enzyme

    Allosteric enzymes need not be oligomers as previously thought, [1] and in fact many systems have demonstrated allostery within single enzymes. [2] In biochemistry , allosteric regulation (or allosteric control ) is the regulation of a protein by binding an effector molecule at a site other than the enzyme's active site .

  6. N-Acetylglutamate synthase - Wikipedia

    en.wikipedia.org/wiki/N-Acetylglutamate_synthase

    NAGS, a member of the N-acetyltransferase family of enzymes, is present in both prokaryotes and eukaryotes, although its role and structure differ widely depending on the species. NAG can be used in the production of ornithine and arginine, two important amino acids, or as an allosteric cofactor for carbamoyl phosphate synthase (CPS1).

  7. Translational regulation - Wikipedia

    en.wikipedia.org/wiki/Translational_regulation

    Translation in plants is tightly regulated as in animals, however, it is not as well understood as transcriptional regulation. There are several levels of regulation including translation initiation, mRNA turnover and ribosome loading. Recent studies have shown that translation is also under the control of the circadian clock.

  8. Fatty acid synthesis - Wikipedia

    en.wikipedia.org/wiki/Fatty_acid_synthesis

    Allosteric control occurs as feedback inhibition by palmitoyl-CoA and activation by citrate. When there are high levels of palmitoyl-CoA, the final product of saturated fatty acid synthesis, it allosterically inactivates acetyl-CoA carboxylase to prevent a build-up of fatty acids in cells.

  9. Transcription-translation coupling - Wikipedia

    en.wikipedia.org/wiki/Transcription-translation...

    Translation promotes transcription elongation and regulates transcription termination. Functional coupling between transcription and translation is caused by direct physical interactions between the ribosome and RNA polymerase ("expressome complex"), ribosome-dependent changes to nascent mRNA secondary structure which affect RNA polymerase activity (e.g. "attenuation"), and ribosome-dependent ...