Search results
Results from the WOW.Com Content Network
Sulfur (16 S) has 23 known isotopes with mass numbers ranging from 27 to 49, four of which are stable: 32 S (95.02%), 33 S (0.75%), 34 S (4.21%), and 36 S (0.02%). The preponderance of sulfur-32 is explained by its production from carbon-12 plus successive fusion capture of five helium-4 nuclei, in the so-called alpha process of exploding type II supernovas (see silicon burning).
This is an accepted version of this page This is the latest accepted revision, reviewed on 21 February 2025. This article is about the chemical element. For other uses, see Sulfur (disambiguation). Chemical element with atomic number 16 (S) Sulfur, 16 S Sulfur Alternative name Sulphur (pre-1992 British spelling) Allotropes see Allotropes of sulfur Appearance Lemon yellow sintered microcrystals ...
A chart or table of nuclides maps the nuclear, or radioactive, behavior of nuclides, as it distinguishes the isotopes of an element.It contrasts with a periodic table, which only maps their chemical behavior, since isotopes (nuclides that are variants of the same element) do not differ chemically to any significant degree, with the exception of hydrogen.
An even number of protons or neutrons is more stable (higher binding energy) because of pairing effects, so even–even nuclides are much more stable than odd–odd. One effect is that there are few stable odd–odd nuclides: in fact only five are stable, with another four having half-lives longer than a billion years.
In the atomic symbol of 32 S, the number 32 refers to the mass of each sulfur atom in daltons, the result of the 16 protons and 16 neutrons of 1 dalton each that make up the sulfur nucleus. The three rare stable isotopes of sulfur are 34 S (4.2% of natural sulfur), 33 S (0.75%), and 36 S (0.015%). [ 4 ]
Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions.. In sufficiently massive stars, the nucleosynthesis by fusion of lighter elements into heavier ones occurs during sequential hydrostatic burning processes called helium burning, carbon burning, oxygen burning, and silicon burning, in which the byproducts of one nuclear fuel become, after ...
Treatment of sulfur with hydrogen gives hydrogen sulfide.When dissolved in water, hydrogen sulfide is mildly acidic: [5] H 2 S ⇌ HS − + H +. Hydrogen sulfide gas and the hydrosulfide anion are extremely toxic to mammals, due to their inhibition of the oxygen-carrying capacity of hemoglobin and certain cytochromes in a manner analogous to cyanide and azide.
The neutron number (symbol N) is the number of neutrons in a nuclide. Atomic number (proton number) plus neutron number equals mass number: Z + N = A. The difference between the neutron number and the atomic number is known as the neutron excess: D = N − Z = A − 2Z.