Search results
Results from the WOW.Com Content Network
In an isosceles triangle, if the ratio of the base angle to the angle at the vertex is algebraic but not rational, is then the ratio between base and side always transcendental? Is a b {\displaystyle a^{b}} always transcendental , for algebraic a ∉ { 0 , 1 } {\displaystyle a\not \in \{0,1\}} and irrational algebraic b {\displaystyle b} ?
Hilbert's problems ranged greatly in topic and precision. Some of them, like the 3rd problem, which was the first to be solved, or the 8th problem (the Riemann hypothesis), which still remains unresolved, were presented precisely enough to enable a clear affirmative or negative answer.
Pages in category "Hilbert's problems" The following 35 pages are in this category, out of 35 total. ... Hilbert's seventh problem; Hilbert's eighth problem;
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Hilbert's proof did not exhibit any explicit counterexample: only in 1967 the first explicit counterexample was constructed by Motzkin. [3] Furthermore, if the polynomial has a degree 2 d greater than two, there are significantly many more non-negative polynomials that cannot be expressed as sums of squares.
Hilbert's thirteenth problem is one of the 23 Hilbert problems set out in a celebrated list compiled in 1900 by David Hilbert. It entails proving whether a solution exists for all 7th-degree equations using algebraic (variant: continuous ) functions of two arguments .
Hilbert proposed that the consistency of more complicated systems, such as real analysis, could be proven in terms of simpler systems. Ultimately, the consistency of all of mathematics could be reduced to basic arithmetic. Gödel's incompleteness theorems, published in 1931, showed that Hilbert's program was unattainable for key areas of ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more