Search results
Results from the WOW.Com Content Network
Given two projective frames of a projective space P, there is exactly one homography of P that maps the first frame onto the second one. If the dimension of a projective space P is at least two, every collineation of P is the composition of an automorphic collineation and a homography. In particular, over the reals, every collineation of a ...
If n is one or two, a projective space of dimension n is called a projective line or a projective plane, respectively. The complex projective line is also called the Riemann sphere. All these definitions extend naturally to the case where K is a division ring; see, for example, Quaternionic projective space.
A homography (or projective transformation) of PG(2, K) is a collineation of this type of projective plane which is a linear transformation of the underlying vector space. Using homogeneous coordinates they can be represented by invertible 3 × 3 matrices over K which act on the points of PG(2, K ) by y = M x T , where x and y are points in K 3 ...
Because they satisfy a quadratic constraint, they establish a one-to-one correspondence between the 4-dimensional space of lines in and points on a quadric in (projective 5-space). A predecessor and special case of Grassmann coordinates (which describe k -dimensional linear subspaces, or flats , in an n -dimensional Euclidean ...
In mathematics, real projective space, denoted or (), is the topological space of lines passing through the origin 0 in the real space +. It is a compact , smooth manifold of dimension n , and is a special case G r ( 1 , R n + 1 ) {\displaystyle \mathbf {Gr} (1,\mathbb {R} ^{n+1})} of a Grassmannian space.
The use of real numbers gives homogeneous coordinates of points in the classical case of the real projective spaces, however any field may be used, in particular, the complex numbers may be used for complex projective space. For example, the complex projective line uses two homogeneous complex coordinates and is known as the Riemann sphere.
For example, it maps the positive real numbers to the interval [−1, 1]. Thus the Cayley transform is used to adapt Legendre polynomials for use with functions on the positive real numbers with Legendre rational functions. As a real homography, points are described with projective coordinates, and the mapping is
Polar space; Pole and polar; Projective cone; Projective frame; Projective harmonic conjugate; Projective line; Projective line over a ring; Projective linear group; Projective orthogonal group; Projective plane; Projective range; Projective space; Projective transformation; Projective variety; Projectively extended real line; Projectivization ...