Search results
Results from the WOW.Com Content Network
A Fibonacci heap is a collection of trees satisfying the minimum-heap property, that is, the key of a child is always greater than or equal to the key of the parent. This implies that the minimum key is always at the root of one of the trees. Compared with binomial heaps, the structure of a Fibonacci heap is more flexible.
A strict Fibonacci heap is a single tree satisfying the minimum-heap property. That is, the key of a node is always smaller than or equal to its children. As a direct consequence, the node with the minimum key always lies at the root. Like ordinary Fibonacci heaps, [4] strict Fibonacci heaps possess substructures similar to binomial heaps. To ...
To improve performance, priority queues are typically based on a heap, giving O(log n) performance for inserts and removals, and O(n) to build the heap initially from a set of n elements. Variants of the basic heap data structure such as pairing heaps or Fibonacci heaps can provide better bounds for some operations. [1]
A (max) heap is a tree-based data structure which satisfies the heap property: for any given node C, if P is a parent node of C, then the key (the value) of P is greater than or equal to the key of C. In addition to the operations of an abstract priority queue, the following table lists the complexity of two additional logical operations:
PHP has both max-heap (SplMaxHeap) and min-heap (SplMinHeap) as of version 5.3 in the Standard PHP Library. Perl has implementations of binary, binomial, and Fibonacci heaps in the Heap distribution available on CPAN. The Go language contains a heap package with heap algorithms that operate on an arbitrary type that satisfies a given interface ...
Download as PDF; Printable version; ... a binomial heap is a data structure that acts as a priority queue. ... Fibonacci [5] [17]
o o o s. c: o thO 00 . Created Date: 9/20/2007 3:37:18 PM
A pairing heap is a type of heap data structure with relatively simple implementation and excellent practical amortized performance, introduced by Michael Fredman, Robert Sedgewick, Daniel Sleator, and Robert Tarjan in 1986. [1] Pairing heaps are heap-ordered multiway tree structures, and can be considered simplified Fibonacci heaps.