enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bounded operator - Wikipedia

    en.wikipedia.org/wiki/Bounded_operator

    A linear operator : between two topological vector spaces (TVSs) is called a bounded linear operator or just bounded if whenever is bounded in then () is bounded in . A subset of a TVS is called bounded (or more precisely, von Neumann bounded ) if every neighborhood of the origin absorbs it.

  3. Continuous linear operator - Wikipedia

    en.wikipedia.org/wiki/Continuous_linear_operator

    Example: A continuous and bounded linear map that is not bounded on any neighborhood: If : is the identity map on some locally convex topological vector space then this linear map is always continuous (indeed, even a TVS-isomorphism) and bounded, but is bounded on a neighborhood if and only if there exists a bounded neighborhood of the origin ...

  4. Compact operator - Wikipedia

    en.wikipedia.org/wiki/Compact_operator

    In functional analysis, a branch of mathematics, a compact operator is a linear operator:, where , are normed vector spaces, with the property that maps bounded subsets of to relatively compact subsets of (subsets with compact closure in ).

  5. Operator (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Operator_(mathematics)

    For example, bijective operators preserving the structure of a vector space are precisely the invertible linear operators. They form the general linear group under composition. However, they do not form a vector space under operator addition; since, for example, both the identity and −identity are invertible (bijective), but their sum, 0, is not.

  6. Unitary operator - Wikipedia

    en.wikipedia.org/wiki/Unitary_operator

    Thus a unitary operator is a bounded linear operator that is both an isometry and a coisometry, [1] or, equivalently, a surjective isometry. [2] An equivalent definition is the following: Definition 2. A unitary operator is a bounded linear operator U : H → H on a Hilbert space H for which the following hold: U is surjective, and

  7. Uniform boundedness principle - Wikipedia

    en.wikipedia.org/wiki/Uniform_boundedness_principle

    Corollary — If a sequence of bounded operators () converges pointwise, that is, the limit of (()) exists for all , then these pointwise limits define a bounded linear operator . The above corollary does not claim that T n {\displaystyle T_{n}} converges to T {\displaystyle T} in operator norm, that is, uniformly on bounded sets.

  8. Strictly singular operator - Wikipedia

    en.wikipedia.org/wiki/Strictly_singular_operator

    For example, if X is a Banach space and T is a strictly singular operator in B(X) then its spectrum satisfies the following properties: (i) the cardinality of () is at most countable; (ii) () (except possibly in the trivial case where X is finite-dimensional); (iii) zero is the only possible limit point of (); and (iv) every nonzero () is an ...

  9. Commutator subspace - Wikipedia

    en.wikipedia.org/wiki/Commutator_subspace

    The commutator subspace of a two-sided ideal J of the bounded linear operators B(H) on a separable Hilbert space H is the linear span of operators in J of the form [A,B] = AB − BA for all operators A from J and B from B(H). The commutator subspace of J is a linear subspace of J denoted by Com(J) or [B(H),J].