enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Penrose graphical notation - Wikipedia

    en.wikipedia.org/wiki/Penrose_graphical_notation

    Penrose graphical notation (tensor diagram notation) of a matrix product state of five particles. In mathematics and physics, Penrose graphical notation or tensor diagram notation is a (usually handwritten) visual depiction of multilinear functions or tensors proposed by Roger Penrose in 1971. [1]

  3. Classical Hamiltonian quaternions - Wikipedia

    en.wikipedia.org/wiki/Classical_Hamiltonian...

    Multiplication of two real numbers, two imaginary numbers or a real number by an imaginary number in the classical notation system was the same operation. Multiplication of a scalar and a vector was accomplished with the same single multiplication operator; multiplication of two vectors of quaternions used this same operation as did ...

  4. Invariants of tensors - Wikipedia

    en.wikipedia.org/wiki/Invariants_of_tensors

    For symmetric tensors, these definitions are reduced. [ 2 ] The correspondence between the principal invariants and the characteristic polynomial of a tensor, in tandem with the Cayley–Hamilton theorem reveals that

  5. Raising and lowering indices - Wikipedia

    en.wikipedia.org/wiki/Raising_and_lowering_indices

    It is common convention to use greek indices when writing expressions involving tensors in Minkowski space, while Latin indices are reserved for Euclidean space. Well-formulated expressions are constrained by the rules of Einstein summation : any index may appear at most twice and furthermore a raised index must contract with a lowered index.

  6. Stack (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Stack_(mathematics)

    A stack is called a stack in groupoids or a (2,1)-sheaf if it is also fibered in groupoids, meaning that its fibers (the inverse images of objects of C) are groupoids. Some authors use the word "stack" to refer to the more restrictive notion of a stack in groupoids.

  7. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    In the analysis of a flow, it is often desirable to reduce the number of equations and/or the number of variables. The incompressible Navier–Stokes equation with mass continuity (four equations in four unknowns) can be reduced to a single equation with a single dependent variable in 2D, or one vector equation in 3D.

  8. Ricci calculus - Wikipedia

    en.wikipedia.org/wiki/Ricci_calculus

    The number of each upper and lower indices of a tensor gives its type: a tensor with p upper and q lower indices is said to be of type (p, q), or to be a type-(p, q) tensor. The number of indices of a tensor, regardless of variance, is called the degree of the tensor (alternatively, its valence, order or rank, although rank is ambiguous).

  9. Grassmann number - Wikipedia

    en.wikipedia.org/wiki/Grassmann_number

    In mathematical physics, a Grassmann number, named after Hermann Grassmann (also called an anticommuting number or supernumber), is an element of the exterior algebra of a complex vector space. [1] The special case of a 1-dimensional algebra is known as a dual number .