Search results
Results from the WOW.Com Content Network
With even cubes, there is considerable restriction, for only 00, o 2, e 4, o 6 and e 8 can be the last two digits of a perfect cube (where o stands for any odd digit and e for any even digit). Some cube numbers are also square numbers; for example, 64 is a square number (8 × 8) and a cube number (4 × 4 × 4).
It means that the length of an optimal solution in HTM ≤ the length of an optimal solution in QTM. The maximal number of face turns needed to solve any instance of the Rubik's Cube is 20, [2] and the maximal number of quarter turns is 26. [3] These numbers are also the diameters of the corresponding Cayley graphs of the Rubik's Cube group. In ...
If (a, b, c) is a solution, then (ka, kb, kc) is also a solution for any k.Consequently, the solutions in rational numbers are all rescalings of integer solutions. Given an Euler brick with edge-lengths (a, b, c), the triple (bc, ac, ab) constitutes an Euler brick as well.
In number theory, a perfect number is a positive integer that is equal to the sum of its positive proper divisors, that is, divisors excluding the number itself. [1] For instance, 6 has proper divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number. The next perfect number is 28, since 1 + 2 + 4 + 7 + 14 = 28.
Semi-log plot of solutions of + + = for integer , , and , and .Green bands denote values of proven not to have a solution.. In the mathematics of sums of powers, it is an open problem to characterize the numbers that can be expressed as a sum of three cubes of integers, allowing both positive and negative cubes in the sum.
A scrambled Rubik's Cube. An algorithm to determine the minimum number of moves to solve Rubik's Cube was published in 1997 by Richard Korf. [10] While it had been known since 1995 that 20 was a lower bound on the number of moves for the solution in the worst case, Tom Rokicki proved in 2010 that no configuration requires more than 20 moves. [11]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Packing squares in a square: Optimal solutions have been proven for n from 1-10, 14-16, 22-25, 33-36, 62-64, 79-81, 98-100, and any square integer. The wasted space is asymptotically O(a 3/5). Packing squares in a circle: Good solutions are known for n ≤ 35. The optimal packing of 10 squares in a square