enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Optimal solutions for the Rubik's Cube - Wikipedia

    en.wikipedia.org/wiki/Optimal_solutions_for_the...

    It means that the length of an optimal solution in HTM ≤ the length of an optimal solution in QTM. The maximal number of face turns needed to solve any instance of the Rubik's Cube is 20, [2] and the maximal number of quarter turns is 26. [3] These numbers are also the diameters of the corresponding Cayley graphs of the Rubik's Cube group. In ...

  3. God's algorithm - Wikipedia

    en.wikipedia.org/wiki/God's_algorithm

    A scrambled Rubik's Cube. An algorithm to determine the minimum number of moves to solve Rubik's Cube was published in 1997 by Richard Korf. [10] While it had been known since 1995 that 20 was a lower bound on the number of moves for the solution in the worst case, Tom Rokicki proved in 2010 that no configuration requires more than 20 moves. [11]

  4. Cube (algebra) - Wikipedia

    en.wikipedia.org/wiki/Cube_(algebra)

    With even cubes, there is considerable restriction, for only 00, o 2, e 4, o 6 and e 8 can be the last two digits of a perfect cube (where o stands for any odd digit and e for any even digit). Some cube numbers are also square numbers; for example, 64 is a square number (8 × 8) and a cube number (4 × 4 × 4).

  5. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    The solutions of this equation are called roots of the cubic function defined by the left-hand side of the equation. If all of the coefficients a, b, c, and d of the cubic equation are real numbers, then it has at least one real root (this is true for all odd-degree polynomial functions). All of the roots of the cubic equation can be found by ...

  6. Identity matrix - Wikipedia

    en.wikipedia.org/wiki/Identity_matrix

    The identity matrix is the only idempotent matrix with non-zero determinant. That is, it is the only matrix such that: When multiplied by itself, the result is itself; All of its rows and columns are linearly independent. The principal square root of an identity matrix is itself, and this is its only positive-definite square root. However ...

  7. Proof by exhaustion - Wikipedia

    en.wikipedia.org/wiki/Proof_by_exhaustion

    Proof by exhaustion can be used to prove that if an integer is a perfect cube, then it must be either a multiple of 9, 1 more than a multiple of 9, or 1 less than a multiple of 9. [3] Proof: Each perfect cube is the cube of some integer n, where n is either a multiple of 3, 1 more than a multiple of 3, or 1 less than a multiple of 3. So these ...

  8. Magic hypercube - Wikipedia

    en.wikipedia.org/wiki/Magic_hypercube

    In mathematics, a magic hypercube is the k-dimensional generalization of magic squares and magic cubes, that is, an n × n × n × ... × n array of integers such that the sums of the numbers on each pillar (along any axis) as well as on the main space diagonals are all the same.

  9. Cube root - Wikipedia

    en.wikipedia.org/wiki/Cube_root

    In mathematics, a cube root of a number x is a number y that has the given number as its third power; that is =. The number of cube roots of a number depends on the number system that is considered. Every nonzero real number x has exactly one real cube root that is denoted x 3 {\textstyle {\sqrt[{3}]{x}}} and called the real cube root of x or ...