enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Aspect ratio (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Aspect_ratio_(aeronautics)

    Aspect ratio (aeronautics) An ASH 31 glider with very high aspect ratio (AR=33.5) and lift-to-drag ratio (L/D=56) In aeronautics, the aspect ratio of a wing is the ratio of its span to its mean chord. It is equal to the square of the wingspan divided by the wing area. Thus, a long, narrow wing has a high aspect ratio, whereas a short, wide wing ...

  3. Thickness-to-chord ratio - Wikipedia

    en.wikipedia.org/wiki/Thickness-to-chord_ratio

    Thickness-to-chord ratio. a=chord, b=thickness, thickness-to-chord ratio = b/a. The F-104 wing has a very low thickness-to-chord ratio of 3.36%. In aeronautics, the thickness-to-chord ratio, sometimes simply chord ratio or thickness ratio, compares the maximum vertical thickness of a wing to its chord. It is a key measure of the performance of ...

  4. Oswald efficiency number - Wikipedia

    en.wikipedia.org/wiki/Oswald_efficiency_number

    The Oswald efficiency is defined for the cases where the overall coefficient of drag of the wing or airplane has a constant+quadratic dependence on the aircraft lift coefficient. where. For conventional fixed-wing aircraft with moderate aspect ratio and sweep, Oswald efficiency number with wing flaps retracted is typically between 0.7 and 0.85 ...

  5. Chord (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Chord_(aeronautics)

    Chords on a swept-wing. In aeronautics, the chord is an imaginary straight line joining the leading edge and trailing edge of an aerofoil. The chord length is the distance between the trailing edge and the point where the chord intersects the leading edge. [1][2] The point on the leading edge used to define the chord may be the surface point of ...

  6. Lift-to-drag ratio - Wikipedia

    en.wikipedia.org/wiki/Lift-to-drag_ratio

    Lift and drag are the two components of the total aerodynamic force acting on an aerofoil or aircraft. In aerodynamics, the lift-to-drag ratio (or L/D ratio) is the lift generated by an aerodynamic body such as an aerofoil or aircraft, divided by the aerodynamic drag caused by moving through air. It describes the aerodynamic efficiency under ...

  7. Lift-induced drag - Wikipedia

    en.wikipedia.org/wiki/Lift-induced_drag

    Lift-induced drag, induced drag, vortex drag, or sometimes drag due to lift, in aerodynamics, is an aerodynamic drag force that occurs whenever a moving object redirects the airflow coming at it. This drag force occurs in airplanes due to wings or a lifting body redirecting air to cause lift and also in cars with airfoil wings that redirect air ...

  8. NACA airfoil - Wikipedia

    en.wikipedia.org/wiki/NACA_airfoil

    A: blue line = chord, green line = camber mean-line, B: leading-edge radius, C: xy coordinates for the profile geometry (chord = x axis; y axis line on that leading edge) The NACA airfoil series is a set of standardized airfoil shapes developed by this agency, which became widely used in the design of aircraft wings.

  9. Nose cone design - Wikipedia

    en.wikipedia.org/wiki/Nose_cone_design

    The ratio of the length of a nose cone compared to its base diameter is known as the fineness ratio. This is sometimes also called the aspect ratio, though that term is usually applied to wings and tails. Fineness ratio is often applied to the entire vehicle, considering the overall length and diameter.